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ABSTRACT 

We give a necessary and sufficient quantitative geometric condition for a 

compact set A C R '~ to have the following property with a given c >_ I: 

For every e > 0 and for every map f: A -+ R n such that 

] f x - f y ] - ] x - y [  < c  fo ra l l x ,  y E A ,  

there is an isometry S: A --+ R n such that ISx - fx] <<_ ce for all x C A. 

1. I n t r o d u c t i o n  

1.1. N e a r i s o m e t r i e s .  Let X and Y be metric  spaces, in which the distance 

between points  a and b is wr i t ten  as [a - b I. A map f :  X -+ Y is a n e a r i s o m e t r y  

if there is ~ > 0 such tha t  

]x - y] - ~ <_ ] f x  - f y ]  < Ix - yl + 

for all x, y E X.  More precisely, we say tha t  such a map is an e - n e a r i s o m e t r y .  

We do not  assume tha t  f is continuous.  In  the l i terature,  the e-nearisometries 

are often called 6-isometries. 

Suppose tha t  A C R ~. For c >_ 1, we say tha t  the set A has the c - i s o m e t r i c  

a p p r o x i m a t i o n  p r o p e r t y ,  abbrevia ted c-IAP, if for each c > 0 and for each 

e-near isometry f :  A -+ R ~ there is an isometry S: R n ~ R n such tha t  I [S - - f I [A  <_ 

co, where we use the no ta t ion  I[gl[A = sup{Igx[: x e A}. 
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It follows from the classical result of Hyers -Ulam [HU, Th. 4] tha t  the whole 

space R ~ has the 10-IAP. In fact, a surjective ~-nearisometry f :  E --+ F between 

Banach spaces E and F can be approximated by a surjective isometry S: E --~ F 

with IIS - f i l e  -< 2E; see lOS, p. 620] or [BL, 15.2]. For maps between Hilbert 

spaces this holds with the bound v ~ ;  see [Se, 1.3]. The surjectivity condition is 

unnecessary in finite-dimensional spaces; see [BS, Th. 1]. Thus the whole space 

W ~ has the v/2-IAP. 

In this paper  we consider the case where A is a b o u n d e d  subset of R n. This 

case is essentially different from the case A = R ~, in which the proof  is based on 

the behavior of f near the point at infinity. In fact, we shall always assume tha t  

A is c o m p a c t  in R n. This is no loss of generality, since every c-nearisometry 

f :  A -~ W ~ of a bounded set A C R n can be extended to an ~-nearisometry 

g: A -+ R ~ by choosing for each b E A \ A a sequence (xn) in A converging to b 

such tha t  f(x~) converges to some point g(b) C R'L 

In [ATV] we gave a sufficient condition for the c-IAP in terms of t h i c k n e s s .  

Let e E R ~ with lel = 1, and let 7re: R ~ --+ R be the projection 7r~x = x • e. The 

thickness of a bounded set A C R '~ is the number  

0(A) = inf{d(~reA): Icl = 1}, 

where d denotes diameter.  Then  0 <_ O(A) < d(A). In [ATV, 3.3] we proved tha t  

if 0(A) _> qd(A) > 0, then A has the c-IAP with c = cn/q where cn depends only 

on n. 

It  will follow from Theorem 2.7 of the present paper  that ,  conversely, if A 

has the c- IAP for some c and if A contains more than  n points, then O(A) > O. 
However, this result is not quanti tat ive:  the c- IAP does not give any upper 

bound  for d(A)/O(A). For example, let t > 0 and let A = {0, eL, te2} C R 2. A 
straightforward proof  shows that  A has the 8-IAP while 0(A) < t and d(A) = 
~/1 + t 2. 

The purpose of this paper  is to give a q u a n t i t a t i v e  geometric characterization 

for compact  sets A C R '~ with the c-IAP. In Section 2 we define the concept of a 

c - so la r  s y s t e m ,  and in the rest of the paper we prove tha t  A is a c-solar system 

if and only i f ,  quantitatively, A has the c-IAP. 

We remark tha t  all compact  sets A c R ~ have the following proper ty  [ATV, 

2.2]: Let f :  A -+ 12 be an ~d(A)-nearisometry with s _< 1. Then  there is an 

isometry S: R ~ --+ 12 such tha t  IIS- fllA <-- c~d(A)v/J, where cn depends only on 

n .  
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1.2. Notation. The s tandard  basis of the euclidean n-space N n is writ ten as 

(e.~, . . . ,e~).  If  0 < k _< n, we identify the space R k with the linear subspaee 

of R n generated by e l , . . . , e k .  We set R~ = {z • Rn: x~ _> 0}. The distance 

between nonempty  sets A, B C R '~ is writ ten as d(A, B). Furthermore,  d(A) is 

the diameter of A, and aft A is the afline subspaee generated by A. For x C R n 

and 1 < k < n w e s e t  

Then  

.~:~, = a ( x ,  R k-~) = V/x~ + . - .  + x,~,. 

k-1  

X ~ E XiCi ~- Xk*e'~ 
i=1 

where e = e(x, k) is a unit vector perpendicular to R k-1. 

We let /~(x, r) denote the closed ball in R n with center x and radius r, and 

we abbreviate /?(r) = /~(0, r) and Bn = /~(1). To simplify notation,  we often 

omit parentheses writing f x  = f(x) etc. For real numbers  s, t we write s V t = 

ma×{.~, t}, ~ A t = m i n { ~  t}. 

1.3. Convention. To avoid trivialities, we shall always assume without  further 

notice that  the set A C R n contains at  least two points. 

2. Solar s y s t e m s  

2.1. Maximal sequences. Let A C R '* be compact .  A finite sequence ~ = 

( u 0 , . . . ,  Um) of points in A is said to be a m a x i m a l  s e q u e n c e  in A if, sett ing 

Ek = a f f{uo , . . . ,  uk}, the number  

(2.2) hk = hk(~) = d ( ~ ,  Ek-1) 

is maximal  in A for all 1 _< k _< m, tha t  is, d(x, Ek_l) <_ hk for all x C A. If  

dim a f f A =  k < m, we also assume tha t , u j  = u o  for k + l _ < j _ <  m. Observe 

tha t  A c / ~ ( u 0 ,  lul - Uol). 
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If  ~ is a maximal  sequence in A, then 

l U l -  Uo[ = hi >_ " "  _> h,~ _> 0, 

and hm > 0 if and only if dim aft A > m. 

Given a point  a C A, there always exists a maximal  sequence 5 in A with 

Uo = a, but  this sequence is not always unique. A maximal  sequence fi is said 

to be n o r m a l i z e d  if u0 = 0, ul  = el, and uk E R~_ for all 2 < k < m. Then  

Ek = R k for all k < d i m a f f A ,  and hk = (uk)~. Given a maximal  sequence fi in 

A, there is a similarity T: R" -+ R" such tha t  the sequence Tfi is normalized and 

maximal  in TA.  

Observe that  Uo is an arbi t rary  point  of A. In this respect, the definition above 

differs from the definition of a maximal  sequence in [ATV], where we assumed 

that  ]uo - Ull = d(A).  Instead,  we now have d ( A ) / 2  < ]u0 - ull <<_ d(A).  If  ~2 is 

normalized and maximal  in A, then 1 <_ d(A)  < 2. 

2.3. Solar systems. Let c > 1. A compact  set A c R n is said to be a c - so la r  

s y s t e m  if there is a maximal  sequence ~ = (Uo, . . . ,  u , )  in A such tha t  

(S1) lUk -- uo] _< chk for all 2 < k < n, 

(S2) A \ { U l , . . . ,  u , }  c /} (Uo ,  chn), 

where hk = hk(5) is as in (2.2). 

The  conditions ($1) and ($2) can also be expressed as the single condition 

(S) A \ { u l , . . . , u k - 1 }  C [~(uo,chk) for all 2 < k < n. 

Observe tha t  (S1) holds trivially for k = 1 with c = 1. If  k _> 2 and uk ~ Uo, 

we can consider the angle ak between the vector uk - Uo and the (k - 1)-plane 

Ek-1.  Condit ion (S1) can then be writ ten as s inak  > 1/c. Thus the angles ak 

are bounded from below. Moreover, since hi >_ . . .  >_ h,~, (S1) implies tha t  

l U k - U o l < _ c l u j - u o l  for l < j < k _ < n ,  

but  there is no upper bound for the ratios luj - uol/ luj+l - uol. Condit ion (S2) 

means that  most  of A is concentrated to a neighborhood of Uo, which can be 

arbitrari ly small. 

We can think tha t  the points u l , . . . , u n  are the p l a n e t s  and tha t  the rest 

A \ { u l , . . . , u n }  of the set A is the s u n  of the system. The sun is contained 

in the ball B(u0,  ch,~) but  it is otherwise an arbi t rary  set. Compared  with the 

real solar system, there are several differences: (1) The planets do not lie in 

a plane. On the contrary, the vectors uj - Uo are linearly independent in a 

quant i ta t ive way. (2) The last planet u,~ and maybe  some other planets lie in the 
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bal l /~(uo,  ch,~) and hence in some sense inside the sun though not  too close to 

the center no. (3) The planets have no moons. 

If  d i m a f f A  = k < n, then hj = 0 and uj = uo for k + l  _< j < n. This 

means that  the system d e g e n e r a t e s  to the finite set A = { u 0 , . . . ,  uk}. Hence 

dim aft A = n whenever # A  > n + 1. 

It  is possible to characterize the solar systems without  using maximal  

sequences; see 2.10. 

2.4. Examples. 1. I f t j  > 0 for 1 5 J <_ n, the set A = { 0 , t l e l , . . . , t n e n }  is a 

1-solar sy s t em.  

2. For 0 < t < 1, the set A = {0, el, te2, el + re2} is not  a c-solar system for 

any c < 1/t. 

3. Suppose tha t  A C R ~ is compact  and tha t  [~(uo,r) C A C [~(uo, R). If 

( u 0 , . . . ,  u,~) is a maximal  sequence in A, then R _> hi  >_ . . .  > hn _> r. I t  follows 

tha t  A is a c-solar system with c -- R/r .  

4. In particular,  the closure of a bounded c-John domain D C R ~ in the 

distance carrot  sense [NV, 2.2] is a c-solar system . 

5. If  0(A) >_ qd(A) > 0, then A is a c-solar system with e = 1/q. To prove 

this, let ~ be a maximal  sequence in A. Since qd(A) <_ 8(A) < h~, we have 

A C [~(uo, h,~/q), and the conditions (S1) and ($2) follow with c = 1/q. 

6. Every compact  set A c R is trivially a 1-solar s y s t e m .  

We can now formulate the main result of the paper. 

2.5. THEOREM: The properties c-IAP and c-solar system are quantitatively 

equivalent. More precisely, let A C R ~ be compact. 

(1) I r A  is a e-solar sys tem,  then A has the c*-IAP with e* = e*(e, n). 

(2) I r A  has the c - I A P ,  then A is a c~-solar system with c' = c'(c, n). 

We shall prove (1) in Section 4 and (2) in Section 5. In Section 3 we give some 

general results on the IAP. 

We first give some consequences of 2.5: 

2.6. THEOREM: Suppose that A C R n is a compact set with d i m a f f A  = k < n. 

Then A has the c- lAP if  and only if, quantitatively, # A  -- k + 1 and A can be 

written as a maximal sequence ( u o , . . . ,  uk) such that 

luj - uol <_ chj = cd(uj, a f t {u0 , . . . ,  uj_l} )  

whenever 2 ~ j ~ k. 
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2.7. THEOREM: Let A C R ~ be compact  with # A  >_ n + 1. 

c-IAP for some c > 1 if  and only i f  O(A) > O. 

Then A has the 

Prook If O(A) > 0, then A has the c-IAP with c = c,~d(A)/O(A) by [ATV, a.a]. 

Alternatively, this follows from 2.5 and 2.4.5. 

Conversely, suppose that  A has the c-IAP. Since # A  _> n + 1, we have 

dim aft A = n by 2.6. Hence O(A) > O. | 

2.8. THEOREM: I rA  C R n is a compact  set wi thout  isolated points, the following 

conditions are quanti tat ively equivalent: 

(1) A has the c-IAP, 

(2) fl(A) >_ qd(A).  

Proof: The implication (2) ~ (1) was given in [ATV, 3.3], and it is recalled in 

3.3 of the present paper. If (1) holds, then A is a d-solar system with c' = c'(c, n) 

by 2.5. Let ~ = (u0 , . . . ,  un) be the maximal sequence in A given by the definition 

of a solar system. Since ul is not isolated in A, we have 

s u p { [ x -  Uo[: x • A ' - ( u l , . . . , u , ~ } }  = [ u l -  uol, 

and hence d ( A ) / 2  < lU l  - Uo[ ~ c'h~(ft). This implies that  

O(A) >_ hn/C,~ >_ d(A) /2c 'Cn ,  

where Cn depends only on n; see 5.8. | 

The following result on simplexes will be needed in 2.10 and in 5.27. 

2.9. LEMMA: Suppose that  A C R ~ is a p-simplex with vertices O, u l , . . . , U p  

and that  ft = (0, Ul, . . . , Up) is a maximal  sequence in A.  Let  bj be the height o f  

A measured from the vertex uj .  Then  

lu J < full "'l pl 
bj - hl " " hp ' 

where hk ---- hk(ft) is as in (2.2). 

Proof'. Let Aj be the ( p -  1)-face of A opposite to uj.  Then the volume of A is 

rap(a)  = Here 

lull'" lupl mp_i(zX ) _< (p-  1)!l jl" 
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Since rap(A) = hi " "  hp/p!, the l emma  follows. | 

We next  give some al ternat ive character izat ions of solar systems,  which do not 

involve max ima l  sequences. This  result is not needed in the proof  of the main  

theorem 2.5. 

2.10. THEOREM: Let  A C R '~ be compact. The following conditions are quanti-  

tatively equivalent: 

(1) A is a c-solar system. 

(2) There is a t~nite set F = {Uo, . . . ,  un} C A such that  

(2a) Ink - u 0 l  _< c d ( u k , a f l ' ( F \ { u k } )  for all 1 < k < n, 

(2b) A \ F  c cmin{l   -  o1:1 < k < .,}). 

(3) There is a sequence ft = (uo . . . .  , u,~) in A such that 

(3a) [ u k + l - u o l < _  Iuk - uol for l < k < n - 1 ,  

(3b) ]uk--Uol<_chk f o r l < k < n ,  

(3c) A \ { u l , . . . , u , }  C/ ) (Uo ,  ClU. - Uol). 

Here hk = hk('5) is as in (2.2). 

(4) There is a sequence (t = (uo . . . .  , u~) in A such that  

A \ { U l , . . .  , Uk-1) C B(u0, c h k )  

for all 1 < k < n. 

Proo£" We prove the case a f fA  = R~; the degenerate  case is obta ined by an easy 

modification.  By an auxil iary t rans la t ion we may  assume tha t  u0 = 0 in each 

condition. Observe tha t  (2) is independent  of the order of the points  u l , . . . ,  un. 

We prove the quant i ta t ive  implicat ions (1) ~ (2) ~ (3) ~ (4) ~ (1). 

(1) ~ (2): Let ~ = (0, u l , . . . ,  u~) be a max ima l  sequence given by the defini- 

t ion 2.3 of a c-solar system. Since [ujl <_ chj, L e m m a  2.9 gives (2a) with c ~-~ c ~. 

Fur thermore ,  since hn < hj <_ lujl for all 1 <_ j _< n, (2b) follows from ($2) in 

2.3. 

(2) ~ (3): By rearranging we may  assume tha t  lull _> ' -"  _> lunl. Then  (3) 

holds with the same constant  c. 

(3) ~ (4): For 1 < k < j < n we have [ujl <_ [uk[ <_ chk. Hence (4) holds with 

the same constant  c. 

(4) ~ (1): We need the following result. 

2.11. LEMMA: Suppose that  g = (0, a l , . . . , a k )  is a sequence in N ~ such that 

tail = 1 < chj(5)  for 1 <_ j < k. Suppose also that  E C R n is a linear subspace 
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with d i m e  -- k - 1. Then there is j E [1, k] such that d (a j ,E )  >_ 1/A with 
= A(c, k) > 1. 

Proof: Let A be the k-simplex with vertices 0, a l , . . . ,  ak, set F = aft A, and let 

FA/~(xo ,  r) ,  x0 C F ,  be the k-disk inscribed to A. Since d i m F + d i m E  ± = n + l ,  

we can choose a unit  vector  e E F n E ±. Let P ' :  R" --+ E ± be the or thogonal  

project ion.  Then  IP'(xo + re) - P ' (xo - re)l = 2r, and thus d ( P ' A )  _> 2,'. Hence 

it suffices to get an es t imate  r > 1/A. 

Let A j  be the (k - 1)-face of A opposi te  to aj .  The  k-volmne of A is 
k A ink(A) = ( r / k ) ~ j = o m k - l ( j ) .  Here m k - l ( A j )  _< 1 / ( k -  1)! for 1 _< j _< k, and 

m k - l ( A o )  <_ 2 k - l a ( k  - 1), where a ( k  - 1) = 2(1-k)/2x/~/(k - 1)! is the volume 

of the unit  ( k -  1)-simplex. Since m k ( A )  = h~ . . .  hk/k! ,  we obta in  r > 1/A with 

A = 2(k+D/2ck-lv/k.  | 

2.12. Proof  o f  2.10 continues: Suppose tha t  fi -- ( u 0 , . . . ,  u~) satisfies condit ion 

(4) of 2.10. Choose a max imal  sequence ~ = ( v 0 , . . . ,  v,~) in A with Vo = u0. We 

may  assume tha t  ~ is normalized.  Then  Uo = v0 = 0, vl = el and A C /}~ .  

Set h~ = hk(~). We first show tha t  

(2.13) hk <_ cA(c, k)h' k 

for all 1 < k < n, where A(c, k) is the constant  of 2.11. 

Applying 2.11 to aj  = uj / lu j l  we find j e [1, k] with d(aj, R k - l )  >_ 1/A(c, k). 
Hence d(uj ,  R k - l )  > lujl/A(c, k). Since V is a max imal  sequence in A, we have 

d(uj ,  R k - l )  <_ h'k, and thus lujl < A(c,k)h'  k. Since hk <_ [Ukl <_ chj < cluj[, we 

obta in  (2.13). 

' = 1 and c~+ 1 = c2A(c,k + 1)c~ for 1 < k < n -  1. We show tha t  Set c 1 
- ! ! 

(2.14) A \ { V l , . . .  ,vk-1}  C B(ckhk) 

for all 1 < k < n. This  will prove tha t  A is a c-solar sys tem with c' = c,~. 

The  case k = 1 is clear, since A C / ~  = B(c'lh'l). Assume tha t  (2.14) holds 

for 1 < k < p _ <  n -  1. Let x e A \ { v l , . . . , v p } .  
If  { u l , . . . , u p }  = { v l , . . . , V p } ,  then Ixl <_ chp+l, and hence Ixl < 

c2A(c,p + 1)h +l _< by (2.13). 
I f  { u l , . . . , U p }  ~ { V l , . . . , v p } ,  then we can choose j E [1,p] with vj q~ 

{ u l , . . . , U p } .  Then  tvjl < chp+l << c2A(c,p + 1)hp+l by (2.13). Since x e 

A \ { v l , . . . ,  vj -1} ,  the inductive hypothesis  yields 

_ ' ' < c'jlvjl < c'jc2A(c,p+ 1)hp+ 1 < c' h' Ix] < cjhj  _ _ - p+l p+l" | 
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3. G e n e r a l  r e s u l t s  o n  t h e  I A P  

We first show t h a t  the  c - IAP is invar iant  under  s imilar i t ies .  

3.1. THEOREM: Suppose  that  A c R ~ has the  c - IAP and  that  T: R n -+ R'* is a 

similarity.  Then  the set T A  has the  c- IAP . 

Proof: Let L be the  Lipschitz  cons tan t  of T, and  let  f :  T A  --+ R ~ be an 

e -near i somet ry  . Define g: A -+ R ~ by gx = T - l f T x .  Then  g is an ( e /L ) -  

n e a r i s o m e t r y .  Hence there  is an i somet ry  S of R ~ wi th  IIS - gila <-- c s / L .  Then 

S I = T S T  -1 is an i somet ry  wi th  ]IS - flITA ~-- CS. | 

3.2. THEOREM: Suppose  tha t  A c R n is compact ,  tha t  s0 > 0, and  tha t  A 

satisfies the definition of  c - IAP for all s < e0. Then A has  the c~-IAP with 

c' = max{c,  1 + 2d(A) /eo} .  

Proof: Let s _> So and let f :  A --+ R" be an e - n e a r i s o m e t r y .  F ix  a C A, and let 

S: A --~ R" be the  i somet ry  defined by S x  = x + f a  - a. For each x C A we have 

lSx- fx[ <_ Ix - al+ Ifz- fal <_ 21x-a1+e 

_< 2 Ix  - ale~so + e <_ (1 + 2d(A) /eo)e .  | 

3.3. THEOREM: Suppose that  A C R ~ is compact  and that  O(A) >_ qd(A) > O. 

Then A has the c- IAP with c = cn/q,  where c~ depends only  on n. 

Proof: The theorem follows fi'om [ATV, 3.3]. | 

4. So lar  s y s t e m s  have  t h e  I A P  

In this  sect ion we prove P a r t  (1) of the  ma in  theorem 2.5. 

4.1. THEOREM: I f  A C R n is a c-solar s y s t em  , then A has the c*-IAP with 

: = : ( c , n ) .  

Tile p roof  of 4.1 is r a the r  s imi lar  to bu t  (surpris ingly)  somewha t  s impler  t han  

the  proof  of [ATV, 3.3]. On the o ther  hand,  the  funct ion c ~+ c* will not  be so 

s imple as the  funct ion q ~+ c,~/q of [ATV, 3.3]. 

If  ~ = (0, U l , . . . , U m )  is a normal ized  m a x i m a l  sequence in a compac t  set 

F C R n, we say tha t  a m a p  f :  F -+ R '~ is n o r m a l i z e d  at  ~ if f (0 )  = 0 and if 

f ( u k )  E Rk+ for all  1 < k < m. 

Convention. In this  sect ion we shall  wri te  x ~ = f x  if f is a m a p  defined at  a 

poin t  x. 
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4.2. An inductive statement. For an integer n > 1 we consider the  following 

s t a tement .  

T , :  Suppose tha t  n < N and t ha t  F = {Uo , . . . ,  un, x} C R N is such t ha t  the  

sequence ~ = ( U o , . . . ,  u,~) normal ized  and max ima l  in F with  h ,  > 0. Suppose  

also t ha t  
lukl <_chk for 1 < k < n, 

Ixl <ch~, 

where hk is as in (2.2). Let  f :  F -+ R N be an ¢ -near i somet ry  wi th  e < h , ,  

normal ized  at  ft. Then  

(i) Ix .  - x ' l  _< o~ ,  
(ii) x 2 - x '2 I ( ,+1) ,  . (,+~),1 -< w-( Ix l  v ~) ~. 
The  cons tan ts  0-  and  ~-. depend  only on c and  n, and  they  are given by  the 

formulas  
Q1 = 7.5, T1 = 25.5,  

, - -1  

o. = 3c(2+ ro ) 
k=l  

rn  ~- Tn--1 ÷ 3On. 

4.3. LEMMA: Statement T .  is true for all n >_ 1. 

Proof: We use induct ion  on n. Let  first n = 1. We have uo = 0, u l  = e l ,  

f ( 0 )  = 0 and re1 = a e l  with ] a - 1  I_< e. Es t ima t ing  the number  I x l - x ~ l  = 

I x .  el  - x '  • el l  by the  basic formula 

(4.4) 2 a . b =  lat e +  Ib[ 2 -  l a - b l  2 

we get 

2Ix ,  - x l l  < (Ixl + t x ' l ) l l x l -  Ix'll + (Ix - e~l + I~' - e~ l ) l lx  - ~ 1  - I~' - e~ll .  

H e r e  
I x l <  1, Ix'i < 1 + c ,  [ x - ~ l l  < 2 ,  

Ix' - ~11 < Ix' - s¢11 + Is - 11 _< Ix - ~11 + 2c,  

Ix' - ~ 1  >_ Ix' - s e l l  - Is - 11 > Ix - ~ 1 1 -  2~, 

and  we ob ta in  

2Ix1 - x]l  _< (2 + e)e + (4 + 2e)2e = 10e + 5e 2 < 1he, 

since e _< h i  = 1. Hence Tl( i )  holds  wi th  ~1 = 7.5. 
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To obtain Tl(ii) we use the formula x22, = Ixl z - ~ and get 

I ~ ,  - ~'~ , ~, _< (Ixt + I x ' l ) l l x l -  Ix'l} + (1:~1 + I x i l ) l ~  - :~,1- 

Here 

Ix'l ~ [xl ÷ ~ ~ 2(Ixl v e), Ix,I ~ Ixl, Ixl l ~ Ix'l, Ix1 - x¢,l ~ 7.5c, 

and hence 

ix~, ,2 - x 2, I < 3( Ix l  v c)e + .3(Ixl v e)7.5e = 25..5(tx I v c)e. 

This proves Tl(ii) with 7-1 = 25.5. 

Next assume tha t  n > 2 and that  Tk is true for 1 < k < n - 1. Let f :  F --~ R N 

be as in T~. By (4.4) we obtain 

Here 

and hence 

2lX'Un - x '  "~'~1 ~(Ixl  + Ix ' l )J lx l -  I~'11 + ( lul l  + l u ~ l ) l l ~ l -  IV~I[ 

+ (Ix - ~ . l  + I~' - ~ ' l ) l l ~  - u . t -  Ix' - ~ ' l l .  

JX i < chn, j~tnj ~ chn, 

Jx'J _< JxJ + s < ch,~ + hn <_ 2chn, 

I~'.1 _< I~.1 + ~ _< 2~hn, 

Ix' - ~ 1  -< Ix - ~ 1  + ~ -< 3~hn, 

2 I X "  U n - -  X t "  Ulnl < 3chnc + 3ch,~e + 5chns = llch~e. 

I R n " I I By normalizat ion we have un C R n, hn = (un),, and u n 6 Setting h n = (un) n 
we get 

~--I 

(4.5) Ix~hn - x" h" l <_ 6ch,~ + ~ (Ixk - x~ll(u~)kL + Ix~ll(u~)k - (u ' )~ l ) .  
k=l  

To estimate the terms of the sum, we use condit ion Tk for the maps f lAk  and 

f lBk, where 

A k =  {uo , . . . , uk ,  x}, B k =  {Uo, . . . ,uk ,  un}. 

The conditions Ix I < chk, lu,~l <_ chk, e <_ hk hold, since hk > h , ,  Applying Tk(i) 

to  f lAk  and to f lBk  we get 

Ix~ - x~l _< ok~, l(un)k - (u:)kl  < ok~. 
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Since 
] ( u . ) k l  < ] ~ 1 - <  chn ,  

these est imates and (4.5) yield 

n--1 

ixoho < 
k=l  

U r Applying Tn- l ( i i )  to f t B n _ l  and observing tha t  h~ = (u , )~ . ,  h'~ -- ( n)~. we 

obtain 

Ih~ - h'2~[ < ~n_,(lunl V ~)~. 

Since e < hn and lug[ <_ ch~, this yields 

th~ - h ' ,  < ,h~ - h'2~l /ho < c ~ _ , ~ .  

Since Ix~l <_ 2chn, this and (4.6) imply tha t  

n - - 1  

k=l  

and hence Tn (i) is true. 

Since Ixnl + [x~,~[ <_ [xl + Ixl + e  _< 3(Ixl ve ) ,  conditions T,~(i) and T~_l(ii)  imply 

T~(ii): 

Iz (~+l ) ,  '~ 2 ,2 - • (~+ ,~ . t  _<lx~.  - x ~.1 + l~,~ - ~'~1 
<~-,,-,(Ixl v~)~+ (Ixnl + [x~,l)One 

--~-,,(Ixl v ~)~. i 

Proof of 4.1: Since the c-solar system condition and the c-IAP are invariant un- 

der similarities of R ~, we may assume tha t  A has a normalized maximal  sequence 

= ( u 0 , . . . ,  un) satisfying the conditions 

(S1) lukl -< ~hk for all 2 < k < n, 

($2) A \ { u l , . . . ,  u~} c / ) ( c h ~ ) ,  

where now hk = (Uk)k. 
It is possible tha t  dim aft A = m < n. In this case we have Uk ---- 0 and hk -= 0 

for m + 1 < k < n, and A = {Uo, . . . ,Um}.  

Suppose that  f :  A -+ R ~ is an ~-nearisometry . We may assume tha t  f is 

normalized at ft. It suffices to show tha t  

(4.7) ix - z ']  _< c*E 
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for all x C A wi th  c* = c*(c,n). 
We use induct ion  on n and s t a r t  wi th  the  case n = 1. Now A C R and  f :  A -+ R 

is an e -nea r i somet ry  wi th  f (0 )  = 0, f (1 )  = c~, [c~ - 1[ <_ e. Let  x C A. Since 

a - x ' _ <  I ~ - z ' l  _< t l - ~ l + e =  1 - z + c ,  

we have 

If  x _> O, then  

x - x ' < l - c ~ + e _ < 2 e .  

and  hence x '  - x <_ e. Assume tha t  x < 0. If e _> 2/3,  then  

ix - x'l  <_ Ixl + Iz'l _< 21xl + c <_ 2 + e < 4c.  

If e < 2/3,  we first show tha t  x '  < c~. Assuming  x '  > c~ we get  

~ ' - ~ =  I~ ' -~1 > I ~ - 1 1 - ~ = 1 - ~ - ~ ,  

x ' <  I~'1 < I~1 + ~-- - x  + ~, 

and we ob ta in  the  cont rad ic t ion  

1 _ < 2 ¢ - c ~ _ < 2 e - ( 1 - ¢ )  < 1. 

Since x ~ < c~, we get 

l + e - x ' > c ~ - x ' = [ c ~ - x '  I > l - x - e ,  

and  hence x '  - x < 2e. The  case n = 1 is now proved with  c* (c, 1) = 4. 

I t  is na tu r a l  t ha t  c*(c, 1) does not  depend  on c, because every compac t  set, in 

R is a 1-solar system.  

Next  let  n _> 2, and  assume tha t  the  theorem holds in dimensions  m < n - 1. 

Ifh,~ = 0 ,  t h e n A =  {U0 , . . . ,Um} for s o m e m  < n w i t h  hm > 0. Since f is 

normal ized  at  ~, we have f A  c R ~ .  Hence [x - x ' [  _< c*(c,m)e tbr all x C A by 

the induct ive  hypothesis .  

Assume tha t  hn > 0. Let  x C A. I f x  ~ Ao = { u 0 , . . . , u ~ - ~ } ,  then  I x - x ' ]  _< 

c*(c,n- 1)e. Assume tha t  x C A \ Ao. Then  Ixl <_ chn by (S1) and ($2). 

If e _< hn, we app ly  s t a t emen t  Tk(i) to f l {uo , . . . ,  uk, x} for each k C [1, n] and  

get ]xk --x'kl <_ Qke. Hence 

n 

- _< d ,  
k=l  
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( V , n  ~2~1/2 
which gives (4.7) with c* (c, n) = ~ z-~k=l gk) • 

Finally, if e > h~, then 

Ix - x ' l  _< Ixl + Ix'[ _< 21xl + e  < 2chn + e  < ( 2 c +  1)e. 

Isr. J. Math. 

5. S e t s  w i t h  t h e  I A P  a r e  s o l a r  s y s t e m s  

In this section we prove Par t  (2) of the main theorem 2.5. 

5.1. THEOREM: hea compac t  set A c R '~ has the c- IAP , then A is a d-so lar  

system with d = c'(c, n) .  

We first consider some auxiliary maps needed in the proof of 5.1. Let n _> 2 

and let w: R --+ R be continuous. We define a homeomorphism g~o: R n -+ R '~ by 

(5.2) gw(x)  = ( X l , . . . ,  Xn-1,  Xn -~- 03(Xl)). 

5.3. LEMMA: For all x,  y E R ~ wi th  Xl ¢ Yl we have  

l lg~x-g~yl- Ix-vii < Ix~ -y~ll~(xl)-~(yl)[ (~(x~) _~(y~))2 
- -  I X l  - -  Yl[ -[- 21xt - Yll 

Proof: Let It: R n --+ R n-1 be the orthogonal  projection. Then 

I g J  - 9~vl 2 = I~x - ~vl ~ + ( x .  + ~(x~) - v .  - ~ (v l ) )  ~ 

---~ IX --  y l  2 ~- 2 ( X  n --  y n ) ( W ( X l )  --  W(yl)  ) -~- (03(Xl) -- cO(yl)) 2. 

Since [g~x - 9~oYl + Ix - Yl >- 21xl - Yll, the lemma follows. | 

5.4. The func t ions  ~ a n d s * .  For 0 < t < 1/2 and s > 0 we let ~o = ~st: R -+ R 

be the piecewise linear function such tha t  ~o(0) = ~(1) = 0, ~(t) = st, ~o(r) = 0 

for r ¢ [0, 1], and ~o is affine on the intervals [0, t] and [t, 1]. For t* > 0 we also 

define a piecewise linear function ~o* = >  ~o*t. : R ~ R by 

st* for r _< - t * ,  
7)*(r) = - s r  f o r - t *  < r < O ,  

0 for r_> O. 

0 t 1 - t *  0 
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Next define fl = fist: R ~ R by 

2st f o r r < 2 t ,  
fl(r) = sr f o r 2 t < r < l ,  

s for r >_ 1, 

and set 
Fo = Fo(s, t )  ={x • R": Ixnl <_ Z(~I)}, 

F~ = F~(s , t*)  ={x • R~': x i  _< 1/2, Ixnl <_ 2st*} 

U {x • Rn: xl _ 1/2, Ix~] ___ s/2}. 

~ 2st 

0 2t 

Fo 

2st* I 
L 

1/2 

I 

8/2 

~G 

5.5. LEMMA: The map g~[Fo is an ¢o-nearisometry with eo = 582t. 

Proo~ Let x , y  6 Fo and set 5 = [Ig~x-  g~Yl - I x -Y[[.  We may assume tha t  

Xl < Yl. 

CASE 1: Yi --< 2t. Now 

Ixn - Y~,I <- 4st, I~(xl) - ~(Yi)l < slxi - Yil A st, 

and 5.3 gives (~ _< 4.5s2t < eo. 

CASE 2: x l  _> t. Now 

IXn -- Yn[ ~ 28~ [~(Xl) -- ~(Yl)I  ~ 2st[xl - Yil  A st, 

and 5.3 again gives 5 < So. 

CASE 3: Xl _ t, Yl --~ 2t. Since 

IXl -- Yl[ ~ Y l / 2 ,  [Xn -- Yn[ ~ 28yl ,  [~(Xl) -- ~(Yl)I  ~ st,  

we obtain 5 < ¢o by 5.3. | 
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5.6. LEMMA: The map  g~. ]F~ is an e~-nearisometry with ~ = 6s2t*(t * V 1). 

Proof'. Let x , y  E F~, set ~ = IIg~*~-g~-yl- Ix-  yll and assume that  xi  < Yi- 

If xl  _> 0, then 5 = 0. If Yi _< 1/2, then 

Ix~ - y~l -< 4st* ,  I ~ * ( x l )  - ~ * ( y l ) l  -< s lx~ - y~l A st*,  

and 5.3 gives ~ _< 4.5s2t * < z0. If xl _< 0 and Yi >_ 1/2, then 

Ix~ - y~l > 1 / 2 ,  I ~ * ( ~ )  - ~ * ( y ~ ) l  -< st*,  

Ix~ - Ynl <- 2st* + s /2  <_ 5s(t* V 1)/2, 

and the inequality 5 _< E~ again follows from 5.3. | 

In the proof of 5.1 we shall make use of the maps g~ and g~. conjugated by 

a similarity T: R" --~ R n. Set h~ = T - i g ~ T ,  and let A = L ipT  be the Lipschitz 

constant of T. The following result is a corollary of 5.5 and 5.6. 

5.7. LEMMA: The map  h~lT-1Fo is an E-nearisometry with c = Co/~ = 5s2t/A, 

and h~. IT-1F~ is an ~*-nearisometry with ~* = ~ / A  = 6s2t*(t * V 1)/A. 

We need the following result on simplexes. Recall that  0(X) is the thickness 

of a compact set X E R n, defined in 1.1. 

5.8. LEMMA: Let  A C R k be a k-simplex with vertices u o , . . . , u k  such that  

(u0 , . . . ,  uk) is a maximal  sequence in A .  Then hk ~_ CkS(A), where hk is given 

by (2.2), and the constant Ck depends only on k. 

Proof'. This follows from [ATV, 5.3 and 5.7]. However, the proof of [ATV, 5.7] 

must be slightly modified, in view of the new definition of a maximal sequence. 

I 

5.9. Two special cases. The proof of Theorem 5.1 is elementary but rather 

long. To follow the idea, it might be helpful for the reader to keep the following 

two special cases in mind. However, they are not actually needed in the proof. 

Let n = 2. 

1. Assume that  {0, el} E A E [0, el] and that  # A  _> 3. Then A i s  not a 

c-solar system in R 2 for any c. To show that  A does not have the IAP we may 

assume that  a = tel  E A with 0 < t _< 1/2. Let 0 < s < 1 and consider the map 

g: A --~ R 2 defined by g(re i )  = rei  + ~(r)e2, where ~ = 9%t: R ~ R is defined in 

5.4. By 5.5, the map g is an e-nearisometry with E = 5s2t. 
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I f A  has the c-IAP, there is an isometry S: R 2 --+ R 2 with [ IS -g i lA  < ce. Then 

SR is a line meeting the d i sks / ) (y ,  ce) for y = 0, e l ,ga .  Since ga = te ,  +ste2,  this 

implies tha t  ce >_ s t /2 ,  and hence 1 _< 10cs. As s --+ 0, this gives a contradiction. 

An elaboration of this proof  shows that  if h < 1/10c and if {0, el} C A C 

[0, 1] x I - h ,  h], then A contains no point, x with 5ch < x~ < 1 - 5ch. 

2. Let 0 < t < 1 and let A = {0, e,, te2, el + te2} C N 2. The set A is not a 

c-solar system for c <_ l i t .  We show tha t  if A has the c-IAP, then e > 1/5t.  

Now we cannot  make use of a map of the type g~o as in Example 1. Instead, 

we define a map f :  A -+ R 2 by f ( t e2)  = - t e 2  and by f x  = x for x ¢ te2. Then 

f is an e-nearisometry with ~ = 2t  2. 

I f A  has the c-IAP, there is an isometry S: R 2 + R ~ with [[S- f I[A < ce. Setting 

T x  = S x  - S(O) we get an orthogonal  map T: R e --+ R 2 with l i t  - flla < 2ce. 

Since ITe, - e ,  I < 2ce, there is an orthogonal  map T1 such tha t  T1Te,  = e,  

and t T , - I  I _< 2ee, where I = id and I T I - I  I is the operator  norm. Then  

U = T I T  is an or thogonal  map with U[R = id and I U -  T I = IT1 - II _< 2ce. 

Then either U = I or U is the reflection U x  = ( x l , - x 2 ) .  In the first case we 

have IU(te,)  - f ( t e l ) l  = 2t, in the second case IU(el + te2) - f ( e l  + te2)l = 2t. 

On the other hand, 

] [ U -  fl[A <_ ] U -  T]d(A) + [ I T -  fl[A < 2ced(A) + 2ce. 

Since d(A) < 3/2,  we obtain 2t <_ 1Oct 2, and hence c >_ 1/5t.  

5.10. Proof  of 5.1 begins. Choose a point uo E A such tha t  d(uo, A ' . { U o } )  

is minimal. Thus uo is a cluster point  of A if A is an infinite set. Let ~ = 

(u0, . . . ,u ,~)  be a maximal  sequence in A. By an auxiliary similarity we may 

assume that  fi is normalized. 

We show by induction tha t  for each integer k E [1, n], the following condition 

holds: 

(pk) - I I l A \ { t t  1 . . . .  , u k - , }  C B(ckhk  ) for some c k = %(c) .  

This will prove Theorem 5.1. 

Condit ion (P,)  holds with c~ = 1, since A C /)n = / ) (h , ) .  Assume tha t  

1 < k < n -  1 and tha t  (Pj)  holds for 1 < j < k. In the rest of this section we 

prove that  (Pk+l) is true. This is done in a sequence of lemmas. 

We first introduce some notation.  Set 

1 kcl . . .c;  
(5.11) q - -  22k+6c , M = 1 + 4 ~  
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We define a number  # > 0 by # = 1/k if A is infinite and by 

1 ck 
(5.12) # = ~ A 3M---q 

if A is finite, where Ck is given by 5.8. Moreover, we set a = #q/Ck. The 

numbers  q, M, it, a depend only on c and k. 

If  hk+l ~__> ahk, then 

A \ { U l , . . . ,  I/'k} C A \ { ~ t l , . . .  , i rk_l} C B(Clkhk) C B(c'khk+l/a ). 

Hence (Pk+l) holds with Ck+ 1 '  = C'k/O~. In the rest of this section we assume tha t  

(5.13) hk+l < o~hk. 

Observe tha t  this implies tha t  hk > O. In 5.28 we shall show tha t  (Pk+l) holds 

with c~+ 1 = M.  

We let A C R k denote the k-simplex with vertices u o , . . . , u k .  Then  A is 

contained in the k-interval 

Q = [-hi ,h i]  x . . .  × [--hk, hk]. 

Let P :  R n -+ R k and P ' :  R n --+ R k-L be the orthogonal  projections. Then P A  C Q 

and IP'xl = X(k+l), for all x • R n. 

We let ~j(x), 0 _< j < k, denote the barycentric coordinates of a point  x • R k 

with respect to (Uo, . . . ,  uk). We extend the function ~j to R ~ by ~j(x) = ~j(Px).  

For each x • R '~ we can write 

k 

x = + I P ' x l e ,  

5=0 

where e = e(x, k) is a unit vector in R k-L. 

5.14.  LEMMA: For each x • Q we have 

(1) I j(x)l < 2 for 0 < j < k, 
(2) k 2k+l  Ej=o I~J(x)l ~ - 1. 

Proof: Clearly (2) follows from (1). Let T:  R k -+ R k be the linear map  for 

which Tej -- e j /h j  for 1 < j < k, and set vj = Tuj .  The numbers ~j(x) are the 

barycentric coordinates of y = T x  with respect to (Vo, . . . ,  vk). Now y • [ -1 ,  1] k, 

V0 ---- 0~ V 1 --~ el~ and 

vi = tile1 + • .. + t i , i- lei-1 + ei 
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for 2 < i < k, where Itijl < 1. Comput ing  the coordinates yj we obtain  

I~k(X)l = lYkl <-- 1, I (k- l (X)  +~k(x) tk ,k - l l  = lYk-l[ < 1, 

and hence 

19 

I k-l(x)l _< 1 + I k(x)llt ,k-ll <_ 2. 

Proceeding inductively we obtain (1). | 

We introduce more notation.  Set 

Jk = { O , . . . , k } ,  fl~ = { J  C Jk: O C J C Jk}. 

For J E flk we write J '  = Jk \ J .  For x E R n we set 

jEJ  

Then ~j , (x)  = 1 - ~ j ( x ) .  Furthermore,  set 

L g = a f t { u s : j G J } c R  k, b j = d ( L j ,  Lg,) .  

Then bj  = b j , .  If  j E Jk, then b s = b{j} is the height of A measured from the 

vertex us, as in 2.9. Let a j  C L j  and a j ,  E L j ,  be points with [aj - aj , [  = bj. 

Then  the vector a j  - aa, is perpendicular  to L j  and to L j , .  Since the or thogonal  

projection of A onto the line through ag and a j, is the line segment [a j ,  aj , ] ,  we 

have 

(5.15) 0(A) < laj - a j,  I = bj.  

By (5.13) and 5.8, this implies tha t  

(5.16) hk+~ < #qbj  

for all J c ffk. 

5.17. LEMMA: Let  J E flk and z E R n. Then there is a similarity T: R '~ --+ R n 

such that  

(1) TR k = R k, 

(2) ( T x ) l  = ~ j ( x )  for all x e R n, 

(3) P ' T z  = }P' z l e , / b z ,  

(4) L i p T  = 1/b j .  

Proof'. By the auxiliary map x ~ x / b j  we can temporar i ly  normalize the situa- 

tion so that  bg = 1. Set a = a j ,  a '  = a j , .  Then la - a '  I = 1. Sett ing S x  = x - a' 
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we ob ta in  an i somet ry  S: R n -4 R ~ wi th  ISal = 1. Choose or thogonal  maps  

UI: R k -4 R k and U2: R k± -4 R k± such tha t  UI(Sa)  = el,  U2P'z  = IP'zlen.  

Then  U = U1P + U2P' is or thogonal .  We show tha t  T = U S  is the  desired 

s imi la r i ty  (now isometry) .  

The  condi t ions  (1) and  (4) are clear. To verify (2), observe t ha t  L j  and L j ,  

are pe rpend icu la r  to a - a '  = Sa, and hence T L j  and T L j ,  are pe rpend icu la r  to 

T a  = el .  Since Ta'  = 0 and Ta  = el ,  it follows tha t  

( T u j ) l  = 1 for j C J, ( T u j ) l  = 0 for j c J ' .  

The  maps  y ~4 (Ty ) I  and ~ j  agree in R k, since they  are affine and  agree in the  

vert ices of A.  Let  x E R ~. Since T P  = T - U P '  and since U P ' x  C R k±, we 

ob ta in  

~j (x )  = ~ j ( P x )  = ( T P x ) l  = ( T x  - U P ' x ) I  = ( T x ) , ,  

and  (2) is proved. 

Since T z  = U1Pz + U2P'z  - Ua', we have P ' T z  = U2P'z  = IP'zlen,  and  (3) 

follows. II 

Unfol ~unately, we sti l l  must  in t roduce  some nota t ion .  For  J • J k  we set 

A j  -~ {x E A: ~ j ( x )  ~_ 1/2}, A S = {x • A: ~g(x) >_ 1/2}, 

tg = m a x { ~ j ( x ) :  x • A j } ,  t~, = - min{~ j (x ) :  x • A j } .  

Then  

A~ = A j , ,  A = A j •  A'j .  

We shall  show in 5.20 tha t  A j  and  A~ are disjoint ,  and  hence A~ = A \ A j .  For 

all j E J we have ~ j (u j )  = 1, and  hence u i C A~. S imi lar ly  uj  E A j  for j E J ' .  

Hence the sets A j  and A~ are never empty.  By 5.14 we always have 

0 < t j  < 1/2, 0 _~ t~ ~ 2 k+l  -- 1. 

5.18.  LEMMA: For  each J C flk there is y E A j  such that 

IP'yl >_ 4qbj( t  g V t'j). 

Proo~ Assume tha t  the  l emma  is not  true.  Then  t j  V t~ > 0. The  proof  can be 

regarded  as an e l abora t ion  of the  special  case 5.9.1. 

CASE 1: t*j <_ t j .  Now t j  > 0 and IP'xl < 4 q b j t j  for all x C A j .  Pick z E A j  

w i t h ~ j ( z )  = t j .  Set t = t j ,  s--= 2q, and  let ~ = ~st:  R - 4  R be the  funct ion 

defined in 5.4. Let  T: R n -4  R n be  the  s imi la r i ty  given by  5.17 for these J 
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and  z. Let  g = g~: R n -+ R n be the  homeomorph i sm defined in (5.2), and  set 

h = T - l g T .  By 5.7, the  m a p  hlT-1Fo is an e -nea r i somet ry  wi th  e = 5s2tbj, 

where F0 is defined in 5.4. 

We show tha t  T A  C Fo. Let x • A. 

SUBCASE l a :  x • A j .  Now (Tx ) l  = { j ( x )  <_ t. Since TR k = R k and since 

L i p T  = 1~b j ,  we have 

I(Tx)~l <_ IP'T*I = I~"xl /b j  < 4qt = 2~t. 

Hence T x  C Fo. 

SUBOASE l b :  x • Aft. Now (Tx) l  = { j ( x )  > 1/2. By (5.16) we obta in  

I(Tx)nl <_ IP'x[/ba <_ hk+l /b j  < #q <_ q = s/2 <_ f i (1/2)  <_ ~( (Tx ) l ) ,  

where/~ = /~ , t  is defined in 5.4. Hence T x  C F0. 

Since T A  c Fo, the  m a p  hlA is an e -nea r i somet ry  . Since A has the  c-IAP, 

there  is an i somet ry  S: R n -+ R n wi th  IIS - hl[A < ce. For each j e ark we have 

(Tuj)~ C {0, 1}. Since ~o(0) = ~o(1) = 0, this  implies  t ha t  huj = uj ,  and  hence 

ISuj - ujl <_ cc, which yields IP'Sujl  <_ ce. Since S is affine, we have 

k 

j=O 

for all x • R k. By 5.14 this  implies  t ha t  IP'Sxl <_ Hce for all  x • Q wi th  

H = 2 k+l - 1. Hence 

IP 'SPzl  <_ Hcc. 

Since (Tz), ,  = tP'zl /ba and (Tz ) l  = {a(z) = t, the  defini t ion (5.2) of g~ gives 

(gTz), ,  = (Tz)n  + ~ ( ( T z ) l )  = IP'~l/bJ + , t .  

Consequently,  

On the o ther  hand,  

IP'hz{ = b j IP 'gTz  I >_ IP'zl + stbj .  

IP'hzl <_ IP'Szl + IP'hz - P ' S z  I <_ IP'Szl + cc. 

Here 

I e ' s z l  <_ W s P <  + [P 'Sz  - P ' s P <  <_ Hoe + fz - P <  = Uce + IP'zl. 
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Combining the estimates yields 

stb9 <_ (H + 1)c¢ = 5- 2k+lcs2tby. 

Since s = 2q = (22k+5c) -1 by (5.11), this implies the contradict ion 

1 < 5.2k+lcs  = 5- 2 - k - 4  < 5/32. 

CASE 2: t j  <_ t*j. Now t:, > 0 and [P'x[ < 4qbjt*j for all x • A j .  Moreover, 

t:, < H = 2 k+l - 1 by 5.14. Pick z • A j  with ~j(z)  = -t*y. Set t* = t~, s = 2q, 

and let ~* = ~*,t-: R --+ R be the function defined in 5.4. Let T: R ~ --+ R n be 

the similarity given by 5.17 for these J and z. Let g* = g~. : R ~ --+ R ~ be as in 

(5.2), and set h* = T- lg * T .  By 5.7, the map  h*IT-1F~) is an c*-nearisometry 

with ~* = 6s2t*(t * V 1)b j ,  where F~ is defined in 5.4. Since t* < H ,  we have 

~* < 6Hs2t*bj. 

We show tha t  T A  C F~). Let x • A. 

SUBCASE 2a:  x E A j .  Now 

(Tx)I  = ~g(x) <_ 1/2, J(Tx)n] < ]P'Txl = ]P' xl/bj < 4qt* = 2st*, 

and hence T x  G F~). 

SUBCASE 2b: x C A S. Now (Tx) l  > 1/2 and 

[(Tx)nl <<_ [P'x[/bj < hk+l/bg < (~hk/bj < qhk/Ckbj.  

By 5.8 and (5.15) this implies tha t  

I(Tx)nl <_ qO(A)/by < q = s/2, 

and hence T x  c F~. 

Since A C T - 1 F ~ ,  the map h*[A is an ~*-nearisometry . Hence there is 

an isometry S: R ~ --+ R n with IIS - h'HA < co*. Now we can proceed as in 

Case 1 and obtain st*bg < 6cH(H + 1)s2t*ba, which gives the contradict ion 

1 _< 12c(H + 1)2q < 3/4,  which completes the proof  of the lemma. II 

5.19. LEMMA: I [A  C R k, then A = {Uo . . . .  ,Uk). 

Proof: Lemma 5.18 implies tha t  t j  = t~, = 0 for each J E ,Tk. Hence ( j (x)  E 

{0, 1} for all 0 < j _< k. II 
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5.20. LEMMA: I [ x  E A j ,  then 

- 4qbj - 4 - 4 k -  4" 

Hence d(Ag,  A'j)  >_ b j~2,  and  the sets A j  and  A S are disjoint. 

Proo~ Since IP'yl < hk+l < ~tqbj for all y E A by (5.16), the l emma follows 

from 5.18. | 

We interpose an e lementary result on orthogonal  maps. Set R ° = {0}. 

5.21. LEMMA: Suppose that  0 _< p _< n - 1 and that  a E R ~ \ R p. Suppose 

also that  U: R ~ --+ R ~ is an orthogonal map with UIRB = id. Then there is an 

orthogonaI map T: R ~ -+ R n such that  TIRP = id, T U a  = a, and 

ITx - xL <_ IUa - a l ] P ~ x L / I P ~ a l  

for all x E R '~, where Pp: R ~ -+ R p± is the orthogonal projection. 

We next  show tha t  for each J E ffk, one of the sets A j  and A S degenerates to 

a very th in  set. 

5.22. LEMMA: For each J E J g  we have 

A j c { x E R k : ~ g ( x ) = O }  or Aj ,  C { x E R k : ( j , ( x ) = 0 } .  

Proof: The proof can be regarded as an e laborat ion of the special case 5.9.2. 

Set Ag_ = max{[P 'x l :  x E A j } .  Then  Aj > 4qbg(t j  V t'j) by 5.18. If Aj = 0, 

this implies tha t  t j  = t )  = 0, and the lemma follows. The case Aj, = 0 is similar, 

and we may thus assume that  Aj > 0, A j ,  > 0. We show tha t  this leads to a 

contradict ion.  

By symmetry,  we may assume tha t  uk+l E A S. Then  

,~j ~ A j,  = hk+l ~ #qbj ,  

where the last inequal i ty  follows from (5.16). 

Pick a point  w E A j  with IP'wl = ha. Define an orthogonal  map U: R n -+ R ~ 

as follows: If k = n - 1, we set U x  = ( X l , . . . ,  xn -1 ,  - x ~ ) .  Then  

(5.23) uIR n-1 = id, l U g -  = 2Aj. 

If k < n - 2, then the sphere Ix[ = A3 meets R k± M R k+l in two points  Ajek+l 
and --Ajek+l. Hence there is an or thogonal  map U':  R k± --+ R k± such tha t  
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U ' P ' w  • R k± ¢q R k+* and [ U ' P ' w  - P ' w  I > A j x / 2 .  Then U = P + U ' P '  is an 

or thogonal  map of R n such tha t  

(5.24) U[R k = i d ,  U w • R  k+l, [ U w - w  t > A a x / 2 .  

Define f :  A -4 R ~ by f l A y  = U I A j  and by f lA 'a  = id. 

FACT 1: f is an ¢-nearisometry with ~ = 4qAz. 

To prove this, l e t x • A a ,  y •  A S , a n d s e t h =  [ I f x - f y l - l x - y l l .  Since 

Ix - y] A ) f x  - ,fy) > b y / 2  by 5.20, we have abj  < I l l*  - fyl = - I x -  yl2l . Since 

Iu'P' l = I P ' < ,  we obtain 

I f x  - f y l  = = IUx - y[= = l e x  - P y l  2 + [ U ' P ' x  - p ,  y{2 

= Ix - yl 2 + 2 P ' x .  p l y  _ 2 U ' P ' x .  P ' y ,  

and hence 

5bj  < 4 ] P ' x ] l P ' y  I < 4 .~ jhk+l  < 4 A j q b j  = ab j  

by (5.16), and Fact  1 follows. 

Set 

~] = 2CC = 8cq)~j. 

Since A has the c-IAP, there is an isometry S: R ~ --4 R ~ with I]S - f] lA <-- •/2. 

FACT 2: There  is an orthogonal  map Uk+l: R n -4 R '~ such tha t  Uk+IlR k+l = id 

and HUk+l - f] lA <-- 2k+lr/• 

We prove Fact 2 by induction by construct ing for each integer i E [1, k + 1] an 

or thogonal  map  U / o f  R ~ such tha t  

(5.25) UitR i = id, IIUi - f l l n  < 2irL 

Since f i R  k ~ A = id and since uk+l • AS, we have 

f l { u o , . . .  ,Uk+l} = id. 

Setting T x  = S x  - S(O) we get an or thogonal  map  of R n. Since S(0) < V/2, we 

have lIT - f]IA <-- ~?. Since ITu l  - ul] = ITu l  - f u l l  < ~l, there is an orthogonal  

map T1 of R" such that  T1TUl  = u l  and such tha t  I T l x - x l  < ~?lxl for all x • R n. 

Setting U1 -- T 1 T  we thus have IIU1 - TItA < ~, which implies IIU1 - f l lA  < 2~. 

The case i = 1 of (5.25) is proved. 

Assume tha t  1 < p < k and that  we have found maps U 1 , . . . , U p  satisfying 

(5.25). Then  IUpup+z - Up+ll _< 2PrL By 5.21 there is an or thogonal  map  Tp+l 

of R n such tha t  

Tp+IlR p ~ - -  id, Tp+lYpUp+l = up+l, and ]Tp+zx - xl <_ 2P~7}P~xl/hp+l 
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for all x E R n, where /=p is the orthogonal projection onto R p±. Setting Up+l = 

Tp+IUp we have Up+IlR p+I = id. For x C A we have 

lap+iX - fx l  ~ ITp+lapx - apxl + ]Vpx - fwl ~ 2Pr~lPpVpxl/hp+l + 2P~. 

Since IPpg~xl = IPpxl ~ h~+, ,  we obtain (5.25) for i = p + 1, and Fact 2 is 

proved. 

To complete the proof of the lemma, we first assume that k <_ n - 2. Since 

f w  = Uw C R k+l, we have f w  = Uk+lUw, and hence 

I V k + l W  - fw  I = I a k + l W  - a k + l U W  I = Iw -- U w  I ~ / ~ j v / 2  

by (5.24). Since HUk+, - fIIA < 2k+1~] = 2k+4cqAj by Fact 2, this yields the 

contradiction 

v/2 < 2k+4cq = 2 -k-2  < 1/8. 

Finally, let k = n - 1 .  Now Un = U, IR '* = id by Fact 2. Since I w - f w l  = 2Aj by 

(5.23), Fact 2 implies that  2Aa < 2" r /=  2~+3cqAj, which gives the contradiction 
2 < 2 - n - 1 .  | 

For i ~ Jk we write Ai = A{i} and A{ = A' {i}" 

5.26. 

(1) 
(2) 
(a) 
(4) 
(5) 

LEMMA: Let J , K  C Jk. 

If J C K,  then A j  D AK and A S C A~. 

If  J N K = Z, then A'j N A' K = O. 
k t 

A = [-Jj=0 Aj. 
A~ = Nj#i  Aj /'or each i C Jk. 

A~ # {ui} for at most one i E Jk. 

Proof." (1) If x c AK, then ~j(x) = ~K(X) -- ~K.. j(X). By 5.20 this implies 

that ~a(x) < 1/4k + 1/4k < 1/2, and hence x c A j .  This proves (1), since 

A S = A "- Aj.  

(2) Since Y c K' ,  (1) implies that A S C A~, = A \ A~. 

(3) I f x  C A, there is j C Jk wi th~j (x)  > 1 / ( k + l )  > 1/4k. By 5.20 this 

implies that  x ~ A}. 

(4) I f j  ¢ i ,  t henA~NA} = ~ by (2), and hence A~ C Aj. Conversely, (3) 

implies that  NjTk i Aj = [.J~=0 A} \ [.Jj#i A~ c A~. 

(5) If A c R k, then A = {u0 , . . . , uk}  by 5.19. Assmne that A ¢~ R k. By (3) 

there is i e Jk with A~ g~ R k. By 5.22 we have Ai C R k, and ~i(Y) = 0 for all 

y E A i .  
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Let j ¢ i and let x • A}. It suffices to show that x = uj. Now x E As by (4), 

and hence ~s(x) = 0. If k = 1, this implies that x = u s. Assume that k _> 2 and 

choose u E Jk with i ¢ ~ ¢ j .  It suffices to show that ~.(x) = 0. 

Since j E {i, ,} ' ,  we have x • A{s,v} by (1). Moreover, A~ C A}i,~ t, and hence 
A' R k . {s,~} ¢: By 5.22 this implies that x • R k and that 0 = ~s (x )+  ~ (x) = ~, (x). 
| 

5.27. LEMMA: For each i • Jk we have A~ C [~(us, Mhk+l) ,  where M = 

1 + ke l . . . c~ /4q  is as in (5.11). 

Proof: Let x E A~. By 5.20 we have ]1 - ( s (x ) l  < hk+l/4qbs. Moreover, i f j  ~ i, 

then x c Aj by 5.26(4), and 5.20 yields ]~j(x)] _< hk+l/4qbj. Thus 

j~S j = l  bj ]" 

! Since (P~) holds for 1 < u < k, we have lull < % h ,  for these , .  Now Lemma 

2.9 gives lusl/bj <_ c'1.., c' k, and the lemma follows. | 

5.28. Proof of h.1 continues. 

CASE 1: A is infinite. Now A ~t R k by 5.19. By 5.26(5), there is a unique i E Jk 

with d~ ¢ {u~}. For each j • Jk, the set A~ = A ". A s is a neighborhood of uj in 

A. Hence the points uj, j 5L i, are isolated in A. Since uo is a cluster point, we 

have i = 0. Moreover, 5.27 gives A ' - { u l , . . . ,  uk} C B(Mhk+I) .  Hence (Pk+l) 

holds with ' = M. Ck+l 

CASE 2: A is finite. If A C R k, then (Pk+l) follows from 5.19 with %+1' ---- 1. 

Assume that A ¢2 R k. As in Case 1, we find i • Jk with A~ =~ {us}. It suffices to 

show that i = 0, since (Pk+l) will then follow from 5.27 with %+1' = M. 

Assume that i 7~ 0. By 5.27 we have A~ c / ) ( u / ,  r) with r = Mhk+l.  Choose 

a point x • A~ with x ¢ us. Since d(uo, A \{u0})  is minimal, there is y • A 

such that y 7~ u0 and l y - u 0 [  _< [ x - u i [  _< r. I f y  • A~, then l u 0 - u s ]  _< 

]u0 - y] + lY-  ui] _< 2r. If y ¢ A~, then y = u s for some j • {0, i}, and hence 

lUo-Uj]  < r. In both cases we have f o u n d j  • 0 with luj[ = ]Uo-Us] <_ 2r. 

Hence hk <_ h s < ]uj] <_ 2r = 2Mhk+l. 
On the other hand, hk+l < ahk = #qhk/Ck by (5.13), and # _< Ck/3Mq by 

(5.12). These inequalities yield the contradiction hk < 2hk/3, and Theorems 5.1 

and 2.5 are proved. | | 
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