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ABSTRACT

We give a necessary and sufficient quantitative geometric condition for a
compact set A C R™ to have the following property with a given ¢ > 1:
For every € > 0 and for every map f: A — R"™ such that

|fe— fyl— |z —ylj <e foralz,ye€ A,

there is an isometry S: A — R™ such that |Sz — fz| < ce for all ¢ € A.

1. Introduction

1.1. Nearisometries. Let X and Y be metric spaces, in which the distance
between points a and b is written as [a—b|. A map f: X — Y is a nearisometry
if there is £ > 0 such that

e —yl—e<|fr—fyl<|z—yl+e

for all z,y € X. More precisely, we say that such a map is an e-nearisometry.
We do not assume that f is continuous. In the literature, the e-nearisometries
are often called e-isometries.

Suppose that A C R™. For ¢ > 1, we say that the set A has the c-isometric
approximation property, abbreviated ¢-IAP, if for each ¢ > 0 and for each
e-nearisometry f: A — R™ there is an isometry S: R® — R™ such that ||S— f||4 <
ce, where we use the notation ||g||a = sup{|gz|: z € A}.
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It follows from the classical result of Hyers-Ulam [HU, Th. 4] that the whole
space R™ has the 10-IAP. In fact, a surjective e-nearisometry f: E — F between
Banach spaces F and F can be approximated by a surjective isometry S: E — F
with ||S — fllg < 2e; see [0S, p. 620] or [BL, 15.2]. For maps between Hilbert
spaces this holds with the bound /2¢; see [Se, 1.3]. The surjectivity condition is
unnecessary in finite-dimensional spaces; see [BS, Th. 1]. Thus the whole space
R™ has the v/2-IAP.

In this paper we consider the case where A is a bounded subset of R”. This
case is essentially different from the case A = R™, in which the proof is based on
the behavior of f near the point at infinity. In fact, we shall always assume that
A is compact in R™. This is no loss of generality, since every e-nearisometry
f: A - R™ of a bounded set A C R™ can be extended to an e-nearisometry
g: A = R™ by choosing for each b € A A a sequence (x,) in A converging to b
such that f(x,) converges to some point g(b) € R™.

In [ATV] we gave a sufficient condition for the c-JAP in terms of thickness.
Let e € R™ with |e] = 1, and let m.: R® — R be the projection 7.z = z -e. The
thickness of a bounded set A C R™ is the number

0(A) = inf{d(m.A): le| = 1},

where d denotes diameter. Then 0 < 8(A) < d(A). In [ATV, 3.3] we proved that
if 8(A) > qd(A) > 0, then A has the ¢-IAP with ¢ = ¢, /¢ where ¢, depends only
on n.

It will follow from Theorem 2.7 of the present paper that, conversely, if A
has the ¢-IAP for some c and if A contains more than n points, then (4) > 0.
However, this result is not quantitative: the ¢-IAP does not give any upper
bound for d(A)/8(A). For example, let t > 0 and let A = {0,e1,te2} C R%. A
straightforward proof shows that A has the 8-IAP while 8(A) < ¢ and d(A) =
VI+i2

The purpose of this paper is to give a quantitative geometric characterization
for compact sets A C R® with the ¢-TAP. In Section 2 we define the concept of a
c-solar system, and in the rest of the paper we prove that A is a c-solar system
if and only if , quantitatively, A has the ¢-IAP.

We remark that all compact sets A C R” have the following property [ATV,
2.2): Let f: A — Iy be an ed(A)-nearisometry with ¢ < 1. Then there is an
isometry S: R™ — I3 such that [|S ~ f|la < ¢,d(A)V/€, where ¢, depends only on
n.
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1.2. Notation. The standard basis of the euclidean n-space R™ is written as
(e1,-.-,en). H O <k < n, we identify the space Rk with the linear subspace
of R generated by e1,...,e,. We set Rt = {x € R™ x, > 0}. The distance
between nonempty scts A, B C R" is written as d(A, B). Furthermore, d(A) is
the diameter of A, and aff A is the affine subspace generated by A. For x € R®
and 1 < k <n we set

Ty = d(z, RF1) = \/m

k—1
r = E Z;€; + Tg«t,
i=1

Then

where e = e(x, k) is a unit vector perpendicular to R¥~1.

We let B (z,7) denote the closed ball in R™ with center z and radius r, and
we abbreviate B(r) = B(0,r) and B” = B(1). To simplify notation, we often
omit parentheses writing fo = f(x) etc. For real numbers s,{ we write s Vi =
max{s,t}, s At =min{s. t}.

1.3. Convention. To avoid trivialities, we shall always assume without further
notice that the set A C R™ contains at least two points.

2. Solar systems

2.1. Mazimal sequences. Let A C R™ be compact. A finite sequence & =
(ug, - .., un) of points in A is said to be a maximal sequence in A if, setting
Ey, = aff {ug, ..., ux}, the number

(22) hy = }Lk(ﬂ) = d(uk, Ek—l)

is maximal in A for all 1 < k < m, that is, d(x, Ex_1) < hg for all z € A. If
dimaff A = k < m, we also assume that u; = up for £ +1 < j < m. Observe
that A C B(U(), |U1 - UO|).
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If 4 1s a maximal sequence in 4, then
lur —uol =h1 > -+ = Ay >0,

and h,, > 0 if and only if dimaff A > m.

Given a point a € A, there always exists a maximal sequence @ in A with
ug = a, but this sequence is not always unique. A maximal sequence % is said
to be normalized if up = 0,u; = €1, and ux € RX for all 2 < k < m. Then
E, = R* for all k < dimaff A, and hx = (ug)x. Given a maximal sequence & in
A, there is a similarity 7: R® — R" such that the sequence T'@ is normalized and
maximal in T A.

Observe that ug is an arbitrary point of A. In this respect, the definition above
differs from the definition of a maximal sequence in [ATV], where we assumed
that |ug — u1) = d(A). Instead, we now have d(A4)/2 < |up — u1| < d(A). If @ is
normalized and maximal in A, then 1 < d(A) < 2.

2.3. Solar systems. Let ¢ > 1. A compact set A C R" is said to be a c-solar
system if there is a maximal sequence @ = (up,...,u,) in A such that

(S1) |ug — uo| < chy for all 2 < k <n,

(S2) A~{uy,...,un} C B(ug,chy),
where hy, = hg(4) is as in (2.2).

The conditions (S1) and (S2) can also be expressed as the single condition

(S) A~{u,. .., ug_1} C Blug,chg) for all 2 < k < n.

Observe that (S1) holds trivially for k =1 with ¢ = 1. If ¥ > 2 and ug # ug,
we can consider the angle ay between the vector uy — ug and the (k — 1)-plane
E_1. Condition (S1) can then be written as sincay > 1/c. Thus the angles ay
are bounded from below. Moreover, since hy > ... > hy, (S1) implies that

up — ug| < clu; —ug| for1<j<k<m,
§

but there is no upper bound for the ratios |u; — uo|/|uj4+1 — uo|. Condition (S2)
means that most of A is concentrated to a neighborhood of ug, which can be
arbitrarily small.

We can think that the points ug,...,u, are the planets and that the rest
A~{uy,...,u,} of the set A is the sun of the system. The sun is contained
in the ball B(ug,chy) but it is otherwise an arbitrary set. Compared with the
real solar system, there are several differences: (1) The planets do not lie in
a plane. On the contrary, the vectors u; — 1o are linearly independent in a
quantitative way. (2) The last planet u,, and maybe some other planets lie in the
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ball B(up,chy,) and hence in some sense inside the sun though not too close to
the center ug. (3) The planets have no moons.

If dimaff A = k < n, then h; = 0 and u; = up for K+ 1 < j < n. This
means that the system degenerates to the finite set A = {ug,...,ux}. Hence
dimaff A = n whenever #A4 > n + 1.

It is possible to characterize the solar systems without using maximal
sequences; see 2.10.

2.4. Examples. 1. If t; > 0 for 1 < j < n, the set A = {0,¢1€1,...,tne,} isa
1-solar system .

2. For 0 < t < 1, the set A = {0,e;,tes,e1 + tea} is not a c-solar system for
any ¢ < 1/t.

3. Suppose that A C R™ is compact and that B(ug,7) C A C B(ug, R). If
(ug,-..,uy) is a maximal sequence in A, then R > hy > --- > h, > r. It follows
that A is a c-solar system with ¢ = R/r.

4. In particular, the closure of a bounded c-John domain D C R™ in the
distance carrot sense [NV, 2.2] is a ¢-solar system .

5. If 6(A) > qd(A) > 0, then A is a c-solar system with ¢ = 1/¢q. To prove
this, let @ be a maximal sequence in A. Since ¢d(4) < 8(A) < h,, we have
A C B(up, hn/q), and the conditions (S1) and (S2) follow with ¢ = 1/q.

6. Every compact set A C R is trivially a 1-solar system .

We can now formulate the main result of the paper.

2.5. THEOREM: The properties ¢c-IAP and c-solar system are quantitatively
equivalent. More precisely, let A C R™ be compact.

(1) If A is a c-solar system , then A has the ¢*-IAP with ¢* = c¢*(¢,n).

(2) If A has the c-IAP , then A is a ¢/-solar system with ¢’ = ¢'(c,n).

We shall prove (1) in Section 4 and (2) in Section 5. In Section 3 we give some
general results on the TAP.
We first give some consequences of 2.5:

2.6. THEOREM: Suppose that A C R" is a compact set with dimaff A =k < n.
Then A has the c-IAP if and only if, quantitatively, #A = k + 1 and A can be
written as a maximal sequence (uy, . .., u) such that

|Uj - 'U:O‘ S Chj = Cd(Uj, aff{uo, Ceey Uj__l})

whenever 2 < j < k.
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2.7. THEOREM: Let A C R™ be compact with #A4 > n+ 1. Then A has the
c-IAP for some ¢ > 1 if and only if §(A) > 0.

Proof: If §(A) > 0, then A has the c-IAP with ¢ = ¢,d(A)/0(A) by [ATV, 3.3].
Alternatively, this follows from 2.5 and 2.4.5.

Conversely, suppose that A has the c-IAP. Since #4 > n + 1, we have
dimaff A = n by 2.6. Hence 6(A) > 0. ]

2.8. THEOREM: If A C R™ is a compact set without isolated points, the following
conditions are quantitatively equivalent:

(1) A has the c-IAP,

(2) 6(A) > qd(A).

Proof: The implication (2) = (1) was given in [ATV, 3.3], and it is recalled in
3.3 of the present paper. If (1) holds, then A is a ¢/-solar system with ¢ = ¢/(c, n)
by 2.5. Let @ = (ug, . - ., un) be the maximal sequence in A given by the definition
of a solar system. Since wu is not isolated in A4, we have

sup{|z — wo|: x € A~{u1,...,un}} = |us — ugl,
and hence d(A4)/2 < |u; — ug| € ¢’h,(@). This implies that
0(A) > by /Cr 2 d(A)/2¢Ch,
where C,, depends only on n; see 5.8. |

The following result on simplexes will be needed in 2.10 and in 5.27.

2.9. LEMMA: Suppose that A C R™ is a p-simplex with vertices 0,u, ..., up
and that @ = (0,uy,...,up) is a maximal sequence in A. Let b; be the height of
A measured from the vertex u;. Then

IU_JI< 'U‘1|"'|UP|’
b, = hyhy

where hy, = hg (@) is as in (2.2).

Proof: Let Aj be the (p —1)-face of A opposite to u;. Then the volume of A is
mp(A) = bjmp_l(Aj)/p. Here

]
my=1(89) < i)
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Since mp(A) = hy -+ hp/p!, the lemma follows. |

We next give some alternative characterizations of solar systems, which do not
involve maximal sequences. This result is not needed in the proof of the main
theorem 2.5.

2.10. THEOREM: Let A C R™ be compact. The following conditions are quanti-
tatively equivalent:
(1) A is a c-solar system.
(2) There is a finite set F = {uyp,...,un} C A such that
(2a) |ug — uo| < cd(ug, aff (F ~{u}) for all 1 <k <mn,
(2b) ANF C Blug,cmin{|ug — ugl: 1 <k < n}).
(3) There is a sequence @ = (ug, ..., u,) in A such that
(3a) |ugs1 —uol < luk —ug| for 1 <k <n-—1,
(3b) |ug —up| < chy for1 <k <m,
(3¢) A~{ui,...,un} C Blug,clu, — ugl).
Here hy, = hy () is as in (2.2).

(4) There is a sequence @ = (uo, ..., un) in A such that
A \{’U.l, ey uk_l} C B(UQ, Chk;)

forall1 < k <n.

Proof: We prove the case aff A = R™; the degenerate case is obtained by an easy
modification. By an auxiliary translation we may assume that ug = 0 in each

condition. Observe that (2) is independent of the order of the points us, ..., up.
We prove the quantitative implications (1) = (2) = (3) = (4) = (1).
(1) = (2): Let @ = (0, uq,...,u,) be a maximal sequence given by the defini-

tion 2.3 of a c-solar system. Since |u;| < ch;, Lemma 2.9 gives (2a) with ¢+ ¢”.
Furthermore, since h, < h; < |uy| for all 1 < 5 < n, (2b) follows from (S2) in
2.3.

(2) = (3): By rearranging we may assume that |u;| > -+ > |u,|. Then (3)
holds with the same constant c.

(3) = (4): For 1 < k < j < n we have [u;| < |ug| < chg. Hence (4) holds with
the same constant c.

(4) = (1): We need the following result.

2.11. LEMMA: Suppose that @ = (0,aq,...,ax) is a sequence in R™ such that
laj| = 1 < chj(a) for 1 < j < k. Suppose also that E C R™ is a linear subspace
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with dimE = k — 1. Then there is j € [1,k| such that d(a;, E) > 1/X with
A=A, k) > 1.

Proof: Let A be the k-simplex with vertices 0,aq,...,ax, set F = aff A, and let
FNB(zg,r), 2o € F, be the k-disk inscribed to A. Since dim F'+dim Et =n+1,
we can choose a unit vector e € F N E+. Let P': R® — E* be the orthogonal
projection. Then |P'(z¢ +re) — P'(zo — re)| = 2r, and thus d(P'A) > 2r. Hence
it suffices to get an estimate r > 1/A.

Let A; be the (k — 1)-face of A opposite to aj. The k-volume of A is
mp(B) = (r/k) h_gmr_1(4;). Here my_1(8;) < 1/(k—1)! for 1 < j <k, and
mi—1(Ag) < 2871k — 1), where a(k — 1) = 20-5)/2/k /(k — 1)! is the volume
of the unit (k — 1)-simplex. Since my(A) = hy --- hi/k!, we obtain r > 1/ with
A = 2(k+1)/2ck-1/F :

2.12. Proof of 2.10 continues: Suppose that & = (uo,. .., un) satisfies condition
(4) of 2.10. Choose a maximal sequence & = (vy,...,v,) in A with vo = uo. We
may assume that 7 is normalized. Then ug =v9 =0, vi =e; and A C B,

Set hj = hi(v). We first show that

(2.13) hi < cX(c, k)hy,

for all 1 < k < n, where A(c, k) is the constant of 2.11.

Applying 2.11 to a; = u;j/|u;| we find j € [1,k] with d(a;, R*™1) > 1/A(c, k).
Hence d(u;, R¥~1) > |u;|/A(c, k). Since @ is a maximal sequence in A, we have
d(uj, R¥=1) < hf, and thus |u;| < A(e, k)hy. Since by < |ux| < chy < cluj|, we
obtain (2.13).

Set ¢, =1 and ¢, , = 2\, k+ 1)c}, for 1 <k < n — 1. We show that

(2.14) A\{vl,...,vk_l} C B(C;h;)

for all 1 < k < n. This will prove that A is a c-solar system with ¢’ = ¢},.

The case k = 1 is clear, since A C B™ = B(c}h}). Assume that (2.14) holds
for1<k<p<n-—1 Letz€ A~{vq,...,vp}.

If {ug,...,up} = {v1,...,0p}, then |z| < chyyr, and hence |z| <
AXe,p+ 1)hyyq < cpyrhyyg by (2.13).

If {us,...,up} # {v1,...,vp}, then we can choose j € [l,p| with v; ¢
{ut,...,up}. Then |v;| < chpy1 < (e, p + Vhyyy by (2.13). Since z €
A~{vi,...,vj_1}, the inductive hypothesis yields

|z| < b < cflug] < € A(e,p+ Dhyyy < cprrhpyr B
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3. General results on the TAP
We first show that the c-IAP is invariant under similarities.

3.1. THEOREM: Suppose that A C R™ has the ¢-IAP and that T:R® - R" is a
similarity. Then the set T A has the c-IAP .

Proof: Let L be the Lipschitz constant of T, and let f: TA — R™ be an
e-nearisometry . Define g: A — R™ by gz = T fTz. Then g is an (¢/L)-
nearisometry . Hence there is an isometry S of R with ||.S — g||4 < ce/L. Then
S' = TST~!is an isometry with ||S — fllr4 < ce. [ |

3.2. THEOREM: Suppose that A C R™ is compact, that g > 0, and that A
satisfies the definition of ¢-IAP for all ¢ < 3. Then A has the ¢'-IAP with
¢ = max{c,1+ 2d(A)/eo}.

Proof: Let e > g and let f: A — R™ be an e-nearisometry . Fix a € A, and let
S: A — R™ be the isometry defined by Sz = x4 fa — a. For each z € A we have
|Sz — fz| < |z —a|l+|fz— fa] < 2|z —a|+¢
<2z —ale/eg + ¢ < (1 +2d(A)/e0)e. 1

3.3. THEOREM: Suppose that A C R™ is compact and that §(A) > qd(A) > 0.
Then A has the c-IAP with ¢ = ¢,,/q, where ¢, depends only on n.

Proof: The theorem follows from [ATV, 3.3]. ]

4. Solar systems have the IAP
In this section we prove Part (1) of the main theorem 2.5.

4.1. THEOREM: If A C R" is a c-solar system , then A has the c*-IAP with
c* = c*(c¢,n).

The proof of 4.1 is rather similar to but (surprisingly) somewhat simpler than
the proof of [ATV, 3.3]. On the other hand, the function ¢ = ¢* will not be so
simple as the function g — ¢, /q of [ATV, 3.3].

If o = (0,u1,...,um) is a normalized maximal sequence in a compact set
F C R", we say that a map f: F — R" is normalized at @ if f(0) = 0 and if
flug) € RE forall1 <k <m.

Convention. In this section we shall write ' = fz if f is a map defined at a
point z.
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4.2. An inductive statement. For an integer n > 1 we consider the following

statement.

T,.: Suppose that n < N and that F' = {ug,...,un,2} C RY is such that the
sequence @ = (ug, .- ., U,) normalized and maximal in F with h, > 0. Suppose
also that

lug| <chg for 1<k <mn,
|z] <chu,

where hy is as in (2.2). Let f: F — RY be an e-nearisometry with ¢ < hy,
normalized at @#. Then

(i) |zn — 23] < one,

(i) |27, 11y = ml?n+1)*| < a(lz| Vv ee.

The constants g, and 7, depend only on ¢ and n, and they are given by the

formulas
01 =175, . = 25.5,

n—1
on = 3c<2 +y gk) +2¢%T_1,
k=1

Tn = Tp-1+ 3Qn-

4.3. LEMMA: Statement T, is true for alln > 1.

Proof: We use induction on n. Let first n = 1. We have vy = 0, u; = ey,
f(0) = 0 and fe; = ae; with |a — 1| < e. Estimating the number |z, — | =
|z - e1 — ' - e1]| by the basic formula

(4.4) 2a-b=lal®+|b]® - |a— b
we get
2lar - 24 < (] + 1&'Dlal — |o']] + (2 — ea| + o’ — ex])|Jo = ea| = |2’ — el

Here
lz] <1, |#'| < 1+e, |[z—e] <2,
|z’ —e1] < |5’ — aer| + |a— 1] < |z — e1] + 2,
|z’ —e1] > |2/ — aer] — |a— 1] > |z — e1] — 2,

and we obtain
2|z — x| < (24 €)e 4 (44 2¢)2e = 10¢ + 5¢2 < 15¢,

since € < hy = 1. Hence T3 (i) holds with p; = 7.5.
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To obtain T} (ii) we use the formula z3, = |z|2 — z? and get
2, — 25,0 < (el + 22| = |2'|] + (|z] + oy D]y — 24 -
Here
2’| < |zl +e <2zl Ve), || <ol [21] < |2}, |21 ~ 2] < 7.5,
and hence
53, — 2’5, < 3(z| V €)e + 3(|z| v €)7.5¢ = 25.5(|z| V e)e.

This proves Ty (ii) with 7 = 25.5.
Next assume that n > 2 and that T}, is true for 1 <k <n—1. Let f: F =+ RV
be as in T,,. By (4.4) we obtain

2z un — ' up| (2] + o' Dle] = |2'I| + (Junl + lup])[lun] = lug]|

+ (|2 —unl + 1o = up |z — unl = |2" = u ]

Here
[z} < chny fun| < chn,
2’| < |z| + & < chn + hn < 2¢hy,
[us,| < |un| + € < 2¢chy,
|z’ — up | < |z — up| + € < 3chy,
and hence

2| - Uy — 7' - ul,| < 3chpe + 3chpe + Schye = 1lchye.

By normalization we have u, € R", h, = (uy), and u,, € R™. Setting b}, = (u}),

we get

n—1

(45)  |@nhn —ophl| < 6chne + Y (Jok — o5 | (un)e] + g (un)e — (up)e)-
k=1

To estimate the terms of the sum, we use condition Ty for the maps f|Ax and
f|Bgk, where

A = {uo, ..., ug,x}, Br = {ug,...,ux, Uy}

The conditions |z| < chy, |un| < chg, € < hg hold, since by > h,. Applying T (i)
to flAx and to f|By we get

2k — 23] < ke, 1(un)r — (up )kl < one.
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Since

|(Un)k| < |un| £ cha,

|zl < 12| < |z| + € < chp + hn < 2¢hp,
these estimates and (4.5) yield

n—1

(4.6) |Tnhn — 23 by, | < 3chne(2 + Z gk).
k=1
Applying T,,_1(ii) to f|{B,_1 and observing that h, = (tn)ns, b, = (U], )n« We
obtain
|5, = W3l < T (Jun] V )e.

Since € < h,, and |u,| < ch,,, this yields
o — | < [R2 = B2 /by < CTa-re.
Since |z/,| < 2chy, this and (4.6) imply that

hnlTn — 517;;] < |znhn ~ Z';zhm + I-'B:z”hn - h;!

n—1
< 3chne(2 + Z Qk) + 2¢?hp Tn_1€ = hnone,
k=1
and hence T, (i) is true.
Since |z, |+ |z,| < |z|+]z|+¢€ < 3(|z| Ve), conditions Ty, (i) and Ty, (ii) imply
T, (ii):
[fns1ys = & (asnyel Slen, =2l + 122 — o',
<tn-1(lz] v e)e + (Jon| + |27, |) one
=7.(|z| V €)e. |
Proof of 4.1:  Since the c-solar system condition and the ¢-IAP are invariant un-
der similarities of R®, we may assume that A has a normalized maximal sequence
@ = (ug, . . -, uy) satisfying the conditions
(S1) |ug| L chy for all 2 < k <,
(S2) A~{uy,...,un} C B(chy),
where now hy, = (ug ).
It is possible that dimaff A = m < n. In this case we have uy =0 and hx =0
form+1<k<n,and A= {ug,...,um}
Suppose that f: A — R™ is an e-nearisometry . We may assume that f is
normalized at 4. It suffices to show that

(4.7 |z — 2’| < c*e
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for all z € A with ¢* = ¢*(c,n).
We use induction on n and start with the casen =1. Now A CRand f: A - R
is an e-nearisometry with f(0) =0, f(1) = a,|a — 1| <e. Let € A. Since

a-3 <la-zI<|l-z|l+e=1-z+e¢,
we have
-2 <1l—a+e<2e.

If £ > 0, then
<||<l|z|+e=z+c¢,

and hence 2’ — z < . Assume that £ < 0. If ¢ > 2/3, then
lz— 2| < |z|+ |2/ < 2]z]+ e <2+ e < 4e.
If ¢ < 2/3, we first show that 2’ < @. Assuming z’' > « we get

—a=r'—a|>|lz-1-e=1-1x—¢,

o <|| <zl +e=—-z+¢,
and we obtain the contradiction
1<2e-a<2—-(1-¢) <L
Since ' < a, we get
l4+e—-2'>a-2'=la-2'|>1-2—¢

and hence ' — z < 2¢. The case n =1 is now proved with ¢*(¢,1) = 4.

It is natural that ¢*(¢, 1) does not depend on ¢, because every compact set in
R is a 1-solar system.

Next let n > 2, and assume that the theorem holds in dimensions m < n — 1.

If hy,, = 0, then A = {ug,...,un} for some m < n with h,, > 0. Since f is
normalized at @, we have fA C R™. Hence |z — #'| < ¢*(¢,m)e for all x € A by
the inductive hypothesis.

Assume that h, > 0. Let x € A. If z € Ap = {ug,...,un—1}, then |z — 2| <
c*(e,n — 1)e. Assume that 2 € A~ Ag. Then |z| < ch, by (S1) and (S2).

If € < hy, we apply statement T (i) to f|{uo,...,us, z} for each k € [1,n] and
get |z, — 23| < pxe. Hence

n
lz—a'P<e?y o},
k=1
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which gives (4.7) with ¢*(¢,n) = (3 4_, g§)1/2.
Finally, if € > h,,, then

|z —2'| < |z|+|2'] < 2|lz| + € < 2¢h, +e < (2c+1De. 1

5. Sets with the IAP are solar systems

In this section we prove Part (2) of the main theorem 2.5.

5.1. THEOREM: If a compact set A C R™ has the c-IAP , then A is a c'-solar
system with ¢ = (¢, n).

We first consider some auxiliary maps needed in the proof of 5.1. Let n > 2
and let w: R — R be continuous. We define a homeomorphism g,: R® — R™ by

(5.2) 9o () = (&1, .., -1, Tpn + w(z1))-
5.3. LEMMA: For all z,y € R™ with x; # y; we have

Tn — yn”w(xl) - w(yl)' (QJ(.’L‘1) - “‘)(yl))2
|z1 — 11 2|zy — y1 '

1902 — gyl — |z —yl| < |

Proof: Let m: R® = R™"~! be the orthogonal projection. Then

927 = guyl® = |12 = TY|* + (20 + w(21) = Y — w(11))?

= |z — 91> + 2(zn — o) (W(21) — (1)) + (W(x1) — w(m))>
Since |9,z — guy| + |z — y| > 2|21 — 11l the lemma follows. ]

5.4. The functions ¢ and p*. For0 <t < 1/2and s > 0welet ¢ = p: R - R
be the piecewise linear function such that ¢(0) = (1) = 0, ©(t) = st, p(r) =0
for r ¢ [0,1], and ¢ is affine on the intervals [0,¢] and [t,1]. For ¢* > 0 we also
define a piecewise linear function ¢* => ¢j ,.: R = R by

st*  for r < —t*,
o*(r) = { —sr for —t* <r <0,
0 for r > 0.

st st*
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Next define 8 = f5:: R — R by

2st  for r < 2t,
B(r) = {sr for 2t <r <1,
s forr > 1,
and set
Fy = Fy(s,t) ={z € R™: |z,| < B(z1)},
Fy = Fy(s,t*) ={z € R™: 21 < 1/2, |z,] < 25t}
U{z € R*: z; > 1/2, |z,| < 5/2}.
B
s/2
s T
95t 2st*
0 2t 1 1/2

L

~__

5.5. LEMMA: The map g,|Fy is an eo-nearisometry with eq = 5s°t.

Proof: Let x,y € Fp and set § = llgwx — gyl — |z — y” We may assume that
1 < Y1.

CasE 1:  y; < 2t. Now

|Zr — yn| < 4st, |p(z1) — @(y1)| < slzr — | A st,
and 5.3 gives § < 4.55%t < &.
CASE 2: 1 > t. Now

[Zn — ynl < 25, [p(®1) ~ p(y1)| < 2st{zy — yi| A st,
and 5.3 again gives ¢ < &p.
CASE 3: z; <t y; > 2t. Since

lzy — 11l > 91/2, |20 — yn| < 2891, |@(z1) — @(y1)] < st,

we obtain § < g by 5.3. |
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5.6. LEMMA: The map g,

F} is an e}-nearisometry with €f = 6s°t*(t* vV 1).

Proof: Let z,y € Fj,set 6 = l]gtp*z—g(p—y
If z; > 0, then 6 = 0. If y; < 1/2, then

— |z — y|] and assume that z; < ;.

|Tn — yn] < 4st”, J0*(21) — @™ ()| < slz1 — pal A st
and 5.3 gives § < 4.58%t* < gg. If 77 < 0 and y; > 1/2, then
lz1 = 1] > 1/2, l*(z1) — 0" (y1)| < st7,
[T, — yn| < 2st™ +5/2 < 5s(t* Vv 1)/2,
and the inequality 0 < €} again follows from 5.3. |

In the proof of 5.1 we shall make use of the maps g, and g,- conjugated by
a similarity T: R® — R™. Set h,, = T, T, and let A = LipT be the Lipschitz
constant of T'. The following result is a corollary of 5.5 and 5.6.

5.7. LEMMA: The map h,|T~'Fy is an e-nearisometry with e = eo/\ = 5s8%t/),
and hy«|T~1F} is an e*-nearisometry with e* = g5/ = 6s%t*(t* V 1)/

We need the following result on simplexes. Recall that #(X) is the thickness
of a compact set X € R”, defined in 1.1.

5.8. LEMMA: Let A C RF be a k-simplex with vertices uy,...,ux such that
(uo,--.,ug) is a maximal sequence in A. Then hy < Cx0(A), where hy, is given
by (2.2), and the constant Cy, depends only on k.

Proof: This follows from [ATV, 5.3 and 5.7]. However, the proof of [ATV, 5.7]
must be slightly modified, in view of the new definition of a maximal sequence.
|

5.9. Two special cases. The proof of Theorem 5.1 is elementary but rather
long. To follow the idea, it might be helpful for the reader to keep the following
two special cases in mind. However, they are not actually needed in the proof.
Let n = 2.

1. Assume that {0,eq} C A C [0,e1] and that #4 > 3. Then A is not a
c-solar system in R? for any c. To show that A does not have the IAP we may
assume that ¢ = te; € A with 0 < ¢t <1/2. Let 0 < s < 1 and consider the map
g: A — R? defined by g(re;) = re; + ¢(r)e2, where ¢ = pg: R = R is defined in
5.4. By 5.5, the map g is an e-nearisometry with € = 5s2¢.
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If A has the c-IAP, there is an isometry S: R? — R? with ||S —g||4 < ce. Then
SR is a line meeting the disks B(y, ce) for y = 0, e, ga. Since ga = te; + stey, this
implies that ce > st/2, and hence 1 < 10¢s. As s — 0, this gives a contradiction.

An elaboration of this proof shows that if & < 1/10c and if {0,e;} C A C
[0,1] x [—h, k], then A contains no point x with 5ch < 21 < 1 — 5ch.

2. Let 0 <t < 1 and let A = {0,e1,tez,e1 +tea} C R2 The set A is not a
c-solar system for ¢ < 1/t. We show that if A has the ¢-IAP, then ¢ > 1/5¢.

Now we cannot make use of a map of the type g, as in Example 1. Instead,
we define a map f: A — R? by f(te;) = —tes and by fz = x for x # tey. Then
f is an e-nearisometry with ¢ = 2¢2.

If A has the c-IAP, there is an isometry S: R? — R? with [|[S—f{la < ce. Setting
Tz = Sz — S(0) we get an orthogonal map T: R* — R? with ||T — f|la < 2ce.
Since |Te; — e1| < 2ce, there is an orthogonal map Ty such that TyTe; = e;
and Ty — I| < 2ce, where I = id and [Ty — I| is the operator norm. Then
U = ThT is an orthogonal map with UIR = id and |U — T| = [T} — I| < 2ce.
Then either U = [ or U is the reflection Uz = (x1, —x3). In the first case we
have |U(te1) — f(te1)| = 2¢, in the second case |U(e1 + tea) — f(e1 + tes)| = 2t.
On the other hand,

U = flla <|U=TId(A) + IT = flla < 2ced(A) + 2ce.

Since d(A) < 3/2, we obtain 2t < 10ct?, and hence ¢ > 1/5t.

5.10. Proof of 5.1 begins. Choose a point ug € A such that d(ug, A ~{ug})
is minimal. Thus ug is a cluster point of A if A is an infinite set. Let @ =
(ug,-..,un) be a maximal sequence in A. By an auxiliary similarity we may
assume that 4 is normalized.

We show by induction that for each integer k € [1,n], the following condition
holds:

(Pg) A~{u1,...,up_1} C B(cghy) for some ¢, = c(c).

This will prove Theorem 5.1.

Condition (P;) holds with ¢ = 1, since A C B™ = B(h;). Assume that
1 <k <n-—1and that (P;) holds for 1 < j < k. In the rest of this section we
prove that (Pyy1) is true. This is done in a sequence of lemmas.

We first introduce some notation. Set
1 key- ¢

M=1+

(5.11) q= 52k+6,° iq
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We define a number p > 0 by g = 1/k if A is infinite and by

_ 1 Ch
(5.12) = z A M1

if A is finite, where C}, is given by 5.8. Moreover, we set a = uq/Cy. The
numbers ¢, M, i, @ depend only on ¢ and k.
If hgy1 > ahg, then

A~{uy,...,ux} € AN, .. up—1} C B(ckhe) C B(chhrt1/).
Hence (Pg41) holds with ¢ ; = ¢;./a. In the rest of this section we assume that
(5.13) hisr < ahy.
Observe that this implies that hy > 0. In 5.28 we shall show that (Py.1) holds
with ¢, ., = M.

We let A c R¥ denote the k-simplex with vertices ug,...,ux. Then A is
contained in the k-interval

Q = [—hl,hl] X e X [—hk,hk].

Let P: R* — R¥ and P’: R® — R¥L be the orthogonal projections. Then PA C Q
and [P'z| = x(;41), for all 2 € R™.

We let £;(z), 0 < j <k, denote the barycentric coordinates of a point x € R*
with respect to (uo, ..., ux). We extend the function &; to R by §;(z) = §;(Px).
For each € R™ we can write

k
T = zgj (z)u; + |P'zle,
=0

where e = e(z, k) is a unit vector in R¥+.

5.14. LEMMA: For each x € Q we have
(1) {(x)] < 269 for 0 < j <k,
(2) Yo (@) < 2641 - 1.

Proof: Clearly (2) follows from (1). Let T: R¥ — R¥ be the linear map for
which Te; = e;/h; for 1 < j <k, and set v; = T'u;. The numbers {;(z) are the
barycentric coordinates of y = Tz with respect to (vo,...,vx). Now y € [—1,1]*,
vg =0, v = €3, and

v =ther+ -+t €
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for 2 < i < k, where |t;;| < 1. Computing the coordinates y; we obtain

[x(z)] = lye] <1, |€p-1(%) + Eul()thk—1] = Jyr—1] < 1,
and hence
1€e-1(2)] < 1+ & (@)|[Ekp—1] < 2.
Proceeding inductively we obtain (1). |
We introduce more notation. Set

JkZ{U,...,k}, Jk:{JCJk:Q#J#Jk}.

For J € J; we write J' = Jp ™ J. For z € R" we set

() =Y &(@).

jed
Then £y(z) = 1 — €5(x). Furthermore, set

Ly=aff{u;:j€J} CRF, by=d(Ls,Ly).

19

Then by = by. If j € Jg, then b; = by, is the height of A measured from the
vertex uj, as in 2.9. Let ay € Ly and ay» € Ly be points with |ay —ay/| = by.

Then the vector aj —ay is perpendicular to Ly and to L. Since the orthogonal

projection of A onto the line through a; and ay is the line segment [ay, a /], we

have

(5.15) 8(A) < [ag —ap| = by,
By (5.13) and 5.8, this implies that

(5.16) hit1 < pgby

for all J € J.

5.17. LEMMA: Let J € Ji and z € R™. Then there is a similarity T: R® — R"

such that
(1) TR* = R,
(2) (Tz)1 = &4(z) for all x € R™,
(3) P'Tz=|P'zle, /by,
(4) LipT = 1/b;.

Proof: By the auxiliary map x — x/b; we can temporarily normalize the situa-

tion so that by = 1. Set a =ay, @’ = ay. Then |[a —a’| = 1. Setting Sz =z —a’
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we obtain an isometry S: R* — R™ with |Sa| = 1. Choose orthogonal maps
U;: R — RF and Up: RFY — REL such that Uy(Sa) = e, U2P'z = |P'zle,.
Then U = Uy P + Uy P’ is orthogonal. We show that T = US is the desired
similarity (now isometry).

The conditions (1) and (4) are clear. To verify (2), observe that L; and L
are perpendicular to a — a’ = Sa, and hence TL; and T'L;: are perpendicular to
Ta = e;. Since Ta’ = 0 and Ta = e, it follows that

(TU,j)l =1 for j € J, (TUj)l =0forje J'.

The maps y — (Ty); and & agree in R¥, since they are affine and agree in the
vertices of A. Let £ € R*. Since TP = T — UP' and since UP'z € RF, we
obtain

£5(x) = &;(Pz) = (T'Px); = (Tz — UP'z); = (Tx)1,

and (2) is proved.
Since Tz = U1 Pz + Uy P’z — Ud', we have P'Tz = Uy P’z = |P'zle,,, and (3)
follows. |

Unfo.wunately, we still must introduce some notation. For J € J; we set
Aj={zec A:¢(x) <1/2}, A)={reA{()>1/2},
t;=max{&s;(z):z € Ay}, 5 =-min{é;(z):x€ As}

Then
A{]:AJ', A:AJUA{].

We shall show in 5.20 that Ay and A’; are disjoint, and hence A, = A~ A;. For
all j € J we have £;(u;) = 1, and hence u; € A’;. Similarly u; € A for j € J'.
Hence the sets Ay and A’; are never empty. By 5.14 we always have

0<ty<1/2, 0<ty <21
5.18. LEMMA: For each J € Jy, there is y € Ay such that

|P"y| > 4qbs(ts Vv t3).

Proof: Assume that the lemma is not true. Then ¢; Vv ¢% > 0. The proof can be
regarded as an elaboration of the special case 5.9.1.

CASE 11 t% <t;. Now t; >0 and |P'z| < 4qbst; for all z € A;. Pick z € A,
with £5(z) = t;. Set t = t;, s = 2¢, and let ¢ = @4: R — R be the function
defined in 5.4. Let T: R™ — R™ be the similarity given by 5.17 for these J
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and z. Let g = g,: R* — R™ be the homeomorphism defined in (5.2), and set
h = T~¢T. By 5.7, the map h|T~'F, is an e-nearisometry with ¢ = 5s%tby,
where Fy is defined in 5.4.

We show that TA C Fy. Let x € A.

SUBCASE la: z € Ay. Now (Tz); = &5(x) < t. Since TR¥ = RF and since
LipT = 1/by, we have

(Tx),| < |P'Tx|=|P'z|/b; < 4qt = 2st.

Hence T'x € Fy.

SuBcASE 1b:  z € A),. Now (T'z); = £;(z) > 1/2. By (5.16) we obtain
(Ta)n| < [P'l/bs < hiar /by < pg < g =s/2 < B(1/2) < B((T)y),

where 3 = B, is defined in 5.4. Hence Tx € Fy.

Since TA C Fy, the map h|A is an e-nearisometry . Since A has the c-IAP,
there is an isometry S: R® — R™ with ||S — h|la < ce. For each j € J; we have
(Tu;)1 € {0,1}. Since p(0) = ¢(1) = 0, this implies that hu; = uj;, and hence
|Su; — uj| < ce, which yields |P'Su;| < ce. Since S is affine, we have

&
Sz = Z &i(x)Su;
3=0

for all z € R¥. By 5.14 this implies that |P'Sz| < Hece for all z € Q with
H =2%+1 _ 1. Hence
|P'SPz| < Hce.

Since (T'z), = |P'z|/b; and (Tz)1 = €;(2) = ¢, the definition (5.2) of g, gives
(9T2)n = (T2)n + 9((T2)1) = |P'2|/bs + st.

Consequently,
|P'hz| = by| P gTz| > |P'z| + stby.

On the other hand,
|P'hz| < |P'Sz| + |P'hz — P'Sz| < |P'Sz| + ce.
Here

|P'Sz| < |P'SPz| +|P'Sz— P'SPz| < Hce + |z — Pz| = Hee + |P'z|.
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Combining the estimates yields
stby < (H 4 1)ce = 5- 2%t 1es’thy.
Since s = 2q = (2%%+5¢)~! by (5.11), this implies the contradiction
1<5-20 e =5.27%% < 5/39,

CASE 2: ty <t} Now t% > 0 and |P'z| < 4qbst for all z € A;. Moreover,
t5 < H =2%1 —1 by 5.14. Pick z € A with £;(2) = —t%. Set t* = t%, s = 2q,
and let ¢* = ¢ ;.: R = R be the function defined in 5.4. Let T: R* — R™ be
the similarity given by 5.17 for these J and 2. Let g* = g,-: R* = R™ be as in
(5.2), and set h* = T~1g*T. By 5.7, the map h*|T~1F; is an *-nearisometry
with e* = 6s%t*(¢* V 1)by, where Fg is defined in 5.4. Since t* < H, we have
e* < 6Hs’t*b;.
We show that TA C Fj. Let z € A.

SUBCASE 2a: 1z € Aj. Now
(Tz)1 =&5(z) < 1/2, [(Tz)n| < |P'Ta| = |P'z|/by < 4gt* = 2st%,

and hence Tz € Fy.

Suscase 2b:  z € A;. Now (Tz); > 1/2 and
[(Tz)n| < |P'x|/by < Bgy1/by < ahg /by < qhi/Ciby.
By 5.8 and (5.15) this implies that
|(Tz)n| < g0(A)/bs < q=5/2,

and hence Tz € Fj.

Since A C T~'F;, the map h*|A is an e*-nearisometry . Hence there is
an isometry S: R® — R™ with [|§ — h*[|4 < cc*. Now we can proceed as in
Case 1 and obtain st*by < 6cH(H + 1)s?t*b;, which gives the contradiction
1 < 12¢(H + 1)2¢ < 3/4, which completes the proof of the lemma. n

5.19. LEMMA: If A C R¥, then A = {uo,...,ug}.

Proof: Lemma 5.18 implies that t; = t% = 0 for each J € J. Hence §;(z) €
{0,1} foral 0 < j < k. |
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5.20. LEMMA: Ifz € Ay, then

het1 _ p
< < =<
oo < et < B <

Hence d(Aj, A’} > by /2, and the sets Ay and A'; are disjoint.
Proof:  Since [Pyl < hgy1 < pgby for all y € A by (5.16), the lemma follows
from 5.18. |

We interpose an elementary result on orthogonal maps. Set R = {0}.

5.21. LEMMA: Suppose that 0 < p < n — 1 and that « € R® ~RP. Suppose
also that U: R® — R™ is an orthogonal map with U|RP = id. Then there is an
orthogonal map T: R™ - R™ such that T|R? = id, TUa = a, and

[T - o| < |Ua - a||Pal/|Plal

for all z € R", where P;: R — RPL is the orthogonal projection.

We next show that for each J € Jg, one of the sets Ay and A’} degenerates to
a very thin set.

5.22. LEMMA: For each J € Jix we have

Ajc{zeRF:g5(z) =0} or Ay C {zeRF:¢(z) =0}

Proof:  The proof can be regarded as an elaboration of the special case 5.9.2.
Set \j = max{|P'z|: z € As}. Then A; > 4¢bs(t; Vt5) by 5.18. If A; = 0,
this implies that t; = t% = 0, and the lemma follows. The case Ay = 0 is similar,
and we may thus assume that Ay > 0, Ay > 0. We show that this leads to a
contradiction.
By symmetry, we may assume that ugz11 € A}, Then

Ar <Ay = hiyr < ugby,

where the last inequality follows from (5.16).
Pick a point w € Ay with [P'w| = A;. Define an orthogonal map U: R® — R"
as follows: If k=n —1, we set Uz = (21,...,%Zn—1,—2%,). Then

(5.23) URY 1 =id, |Uw—w|=2);.

If k < n — 2, then the sphere |z| = A\; meets R¥L A R*¥*1 in two points A segq1
and —Ajery1. Hence there is an orthogonal map U’: R*: — R*¥L such that
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U'P'w € RF- N RF and |[U'P'w ~ P'w| > Ayv/2. Then U = P+ U'P' is an
orthogonal map of R” such that

(5.24) UIRF =id, Uw e R |Uw—w|> V2.

Define f: A — R™ by flA; = U]A; and by f|4, =id.

FacT 1: [ is an e-nearisometry with € = 4qA;.

To prove this, let z € Ay, y € A', and set § = ’Ifx - fyl— |z - yl] Since
|z — y| A |fz — fy| > bs/2 by 5.20, we have by < ||fz — fy|® — |z — y|?|. Since
|U'P'z| = |P'z|, we obtain

|fz — fy|* = Uz -y = [Pz ~ Py|> + [U'P'z ~ P'y|?
=|z—-y|?+2P'z-P'y—2U'P'z- Py,
and hence
6bJ < 4]Pll‘||P,y' < 4Ajhk+1 S 4AquJ = EbJ
by (5.16), and Fact 1 follows.
Set
17 = 2ce = 8cqAy.
Since A has the c-IAP, there is an isometry S: R* — R™ with ||S — f|la < n/2.

FacT 2:  There is an orthogonal map Ug41: R® — R™ such that Uk+1|Rk+1 =id
and || Ug+1 ~ flla < 2%,

We prove Fact 2 by induction by constructing for each integer ¢ € [1,k+ 1] an
orthogonal map U; of R™ such that

(5.25) UilRE =id, Ui — flla < 2.
Since f|R* N A = id and since ug4 € A’;, we have

fHuo, -+ ukga} = id.

Setting Tx = Sz — S(0) we get an orthogonal map of R™. Since S(0) < n/2, we
have ||T — fljla < 1. Since |Tuy — u1| = |Tuy — fu1| < 7, there is an orthogonal
map T; of R™ such that T;Tu; = u; and such that |Tyz —z| < n|z| for all z € R™.
Setting U; = T4 T we thus have ||[U; — T'||4 < 7, which implies ||U; — flla < 29.
The case ¢ = 1 of (5.25) is proved.

Assume that 1 < p < k and that we have found maps Ui, ..., U, satisfying
(5.25). Then |Upupi1 — tps1] < 2Pn. By 5.21 there is an orthogonal map Tpiq
of R™ such that

Tpr1|RP =id, Tps1Uptpt1 = tpt1, and |Tppz — x| < 2P| Ppx|/hpyr
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for all z € R™, where P, is the orthogonal projection onto RPL. Setting Upy1 =
Ty 41U, we have Up41|RPT! = id. For z € A we have

|Upt1z — fz| < |TpyrUpz — Upz| + |Upa — fa| < 2P| PyUpx|/hpia + 2P,

Since |PyUpz| = |Pyz| < hpy1, we obtain (5.25) for ¢ = p+ 1, and Fact 2 is
proved.

To complete the proof of the lemma, we first assume that £ < n — 2. Since
fw = Uw € R¥*1, we have fw = Uy Uw, and hence

Uk 1w — fw| = [Upgrw — Up 1 Uw| = |w — Uw| > A2

by (5.24). Since ||[Ugt1 — flla < 2%¥+1p = 2%+cq); by Fact 2, this yields the
contradiction

V2 < 2Ftieq = 27%-2 < 1/8.

Finally, let ¥ = n—1. Now U,, = U, |R™ = id by Fact 2. Since |w—fw| = 2A; by
(5.23), Fact 2 implies that 27 < 2"n = 2"3cg)\ 7, which gives the contradiction
2< 27 L [

For i € Ji we write 4; = Ay and A] = A’{i}

5.26. LEMMA: Let J,K € Jy.
() IfJ CK, thenAJDAKandA’ C Ag.
(2y If JN K = @, then A); N A

) 4= U4

(4) A} = ;4 A;j for each i € J.

(5) A’ 7é {u;} for at most one i € Jj.

Proof: (1) If z € Ak, then &;(x) = €x(z) — €k« s(z). By 5.20 this implies
that &;(z) < 1/4k + 1/4k < 1/2, and hence = € A;. This proves (1), since
Af] =ANAj;.

(2) Since J C K', (1) implies that A", C A%, = A~ Al

(3) If z € A, there is j € Jy with &;(z) > 1/(k+ 1) > 1/4k. By 5.20 this
implies that = € AJ.

(4) If j # i, then A; N A} = @ by (2), and hence A; C A;. Conversely, (3)
implies that (;,; A; = U?:o A Ujz 4 C A

(5) If A C Rk, then A = {ug,...,ux} by 5.19. Assume that A ¢ RE. By (3)
there is 1 € Jj, with A} ¢ RE. By 5.22 we have 4, c R¥, and &(y) = 0 for all
y € A,
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Let j # i and let ¢ € A’. It suffices to show that x = u;. Now z € A; by (4),
and hence &;(z) = 0. If k = 1, this implies that 2 = u;. Assume that ¥ > 2 and
choose v € Ji, with 1 # v # j. It suffices to show that &, (z) = 0.

Since j € {i,v}’, we have z € A(; .} by (1). Moreover, A; C A’{i’,j}, and hence
Aun ¢ RE. By 5.22 this implies that z € R* and that 0 = &(z) +¢,(z) = &,(x).
| |

5.27. LEMMA: For each i € J, we have A] C B(u;, Mhy1,), where M =
1+ ke ---c)./4q is as in (5.11).

Proof: Let x € A}. By 5.20 we have |1 — &;(z)| < hyy1/4gb;. Moreover, if j # 4,
then z € A; by 5.26(4), and 5.20 yields |§;(x)| < hg41/4¢b;. Thus

K

1 uj

o=l < Dl @l + 1= 6l + P'al < b (1 2 5 b—)
J#i J=1

Since (P,) holds for 1 < v < k, we have |u,| < ¢, h, for these v. Now Lemma

2.9 gives |u;|/b; < ¢} --- ¢k, and the lemma follows. |

5.28. Proof of 5.1 continues.

CASE 1:  Ais infinite. Now A ¢ R* by 5.19. By 5.26(5), there is a unique i € Ji
with A} # {u;}. For each j € Ji, the set A; = AN A; is a neighborhood of u; in
A. Hence the points u;, j # %, are isolated in A. Since ug is a cluster point, we
have i = 0. Moreover, 5.27 gives A ~N{uy,...,ux} C B(Mhgy1). Hence (Pey1)
holds with ¢, = M.

CASE 2: A is finite. If A C R¥, then (Pyy1) follows from 5.19 with ¢}, = L.
Assume that A ¢ RF. As in Case 1, we find i € J with A, # {u;}. It suffices to
show that ¢ = 0, since (Px4.1) will then follow from 5.27 with ¢, ; = M.

Assume that ¢ # 0. By 5.27 we have A] C B(u;,r) with r = Mhj;. Choose
a point z € A} with  # u;. Since d(up, A “{uo}) is minimal, there is y € A
such that y # up and |y —up| < |z —u;| < 7. If y € Aj, then |ug — u;| <
lug — y| + |y —wi] < 2r. If y ¢ Al then y = u; for some j ¢ {0,4}, and hence
lug — uj| < 7. In both cases we have found j # 0 with Ju;| = |ug — u;| < 2r.
Hence hi, < hj < Juj] < 2r = 2Mbhygy.

On the other hand, hyi 1 < ahg = ughg/Cy by (5.13), and u < Cx/3Mgq by
(5.12). These inequalities yield the contradiction hy < 2hi/3, and Theorems 5.1
and 2.5 are proved. [ | |



Vol. 128, 2002 ISOMETRIC APPROXIMATION IN EUCLIDEAN SPACES 27

References

[ATV] P. Alestalo, D. A. Trotsenko and J. Viisild, Isometric approximation, Israel

[BL]

Journal of Mathematics 125 (2001), 61-82.

Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis I,
American Mathematical Society Colloquium Publications 48, American Math-
ematical Society, Providence, RI, 2000.

R. Bhatia and P. Semrl, Approximate isometries on Euclidean spaces, The
American Mathematical Monthly 104 (1997), 497-504.

D. H. Hyers and S. M. Ulam, On approximate isometries, Bulletin of the
American Mathematical Society 51 (1945), 288-292.

R. Nakki and J. Vaisild, John disks, Expositiones Mathematicae 9 (1991), 3—43.

M. Omladi¢ and P. Semrl, On nonlinear perturbations of isometries, Mathe-
matische Annalen 303 (1995), 617-628.

P. Semrl, Hyers-Ulam stability of isometries, Houston Journal of Mathematics
24 (1998), 699-706.



